1.Spectrum-effect relationship of total anthraquinone extract of Cassia seeds against fluorouracil-induced liver injury in mice.
Heng WANG ; Mengqi LI ; Shenxing LI ; Jinggan SHI ; Li HUANG ; Suoting CHENG ; Chuncai ZOU ; Haiyan YAN
Journal of Southern Medical University 2023;43(5):825-831
OBJECTIVE:
To investigate the spectrum-effect relationship between the total anthraquinone extract of Cassia seeds and fluorouracil (5-Fu)-induced liver injury in mice and identify the effective components in the extract.
METHODS:
A mouse model of liver injury was established by intraperitoneal injection of 5-Fu, with bifendate as the positive control. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and myeloperoxidase (MPO), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in the liver tissue were detected to investigate the effect of the total anthraquinone extract of Cassia seeds (0.4, 0.8 and 1.6 g/kg) on liver injury induced by 5-Fu. HPLC fingerprints of 10 batches of the total anthraquinone extracts were established to analyze the spectrum- effectiveness of the extract against 5- Fu- induced liver injury in mice and screen the effective components using the grey correlation method.
RESULTS:
The 5- Fu- treated mice showed significant differences in liver function parameters from the normal control mice (P < 0.05), suggesting successful modelling. Compared with those in the model group, serum ALT and AST activities were decreased, SOD and T- AOC activities significantly increased, and MPO level was significantly lowered in the mice treated with the total anthraquinone extract (all P < 0.05). HPLC fingerprints of the 31 components in the total anthraquinone extract of Cassia seeds showed good correlations with the potency index of 5-Fu-induced liver injury but with varying correlation strengths. The top 15 components with known correlations included aurantio-obtusina (peak 6), rhein (peak 11), emodin (peak 22), chrysophanol (peak 29) and physcion (peak 30).
CONCLUSION
The effective components in the total anthraquinone extract of Cassia seeds, including aurantio-obtusina, rhein, emodin, chrysophanol, and physcion, are coordinated to produce protective effects against 5-Fu-induced liver injury in mice.
Animals
;
Mice
;
Emodin
;
Cassia
;
Chemical and Drug Induced Liver Injury, Chronic
;
Anthraquinones
;
Antioxidants
;
Fluorouracil/adverse effects*
;
Plant Extracts/pharmacology*
2.Emodin Ameliorates High Glucose-Induced Podocyte Apoptosis via Regulating AMPK/mTOR-Mediated Autophagy Signaling Pathway.
Hong LIU ; Wei-Dong CHEN ; Yang-Lin HU ; Wen-Qiang YANG ; Tao-Tao HU ; Huan-Lan WANG ; Yan-Min ZHANG
Chinese journal of integrative medicine 2023;29(9):801-808
OBJECTIVE:
To investigate the effect of emodin on high glucose (HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)-mediated autophagy in podocytes (MPC5 cells) in vitro.
METHODS:
MPC5 cells were treated with different concentrations of HG (2.5, 5, 10, 20, 40, 80 and 160 mmol/L), emodin (2, 4, 8 µ mol/L), or HG (40 mmol/L) and emodin (4 µ mol/L) with or without rapamycin (Rap, 100 nmol/L) and compound C (10 µ mol/L). The viability and apoptosis of MPC5 cells were detected using cell counting kit-8 (CCK-8) assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy marker light chain 3 (LC3) I/II, and AMPK/mTOR signaling pathway-related proteins were determined by Western blot. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy.
RESULTS:
HG at 20, 40, 80 and 160 mmol/L dose-dependently induced cell apoptosis in MPC5 cells, whereas emodin (4 µ mol/L) significantly ameliorated HG-induced cell apoptosis and caspase-3 cleavage (P<0.01). Emodin (4 µ mol/L) significantly increased LC3-II protein expression levels and induced RFP-LC3-containing punctate structures in MPC5 cells (P<0.01). Furthermore, the protective effects of emodin were mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 µ mol/L) reversed emodin-induced autophagy activation.
CONCLUSION
Emodin ameliorated HG-induced apoptosis of MPC5 cells in vitro that involved induction of autophagy through the AMPK/mTOR signaling pathway, which might provide a potential therapeutic option for diabetic nephropathy.
Emodin/pharmacology*
;
AMP-Activated Protein Kinases/metabolism*
;
Podocytes
;
Caspase 3/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Signal Transduction
;
Apoptosis
;
Sirolimus/pharmacology*
;
Glucose/metabolism*
;
Autophagy
3.Mechanism of combined treatment of rhein and emodin in Rhubarb for ulcerative colitis.
Fei GAO ; Hui-Yun ZHONG ; Ke-Xi CHEN ; Ling-Ling DONG ; Mei-Si LIN ; Hong-Ling DU
China Journal of Chinese Materia Medica 2022;47(15):4148-4155
This study aimed to explore the efficacy and mechanism of combined rhein and emodin in the treatment of ulcerative colitis(UC) from the aspects of network pharmacology, animal inflammation improvement and molecular mechanism. Network pharmacology predicted that combined rhein and emodin acted on 52 potential targets, mainly participating in signaling pathways such as cancer, PI3 K/AKT, microRNAs in cancer and apoptosis. PI3 K/AKT signaling pathway has been reported to be closely related to UC, and the optimal candidate pathway for combined therapy. The UC mice model was established by dextran sodium sulfate, and then the modeled mice were randomly divided into control group, model group, rhein group, emodin group, rhein+emodin group and sulfasalazine group. After administration, compared with the conditions in model group, body weight, disease activity index(DAI) score, colon length, TNF-α, IL-6, IL-1β and myeloperoxidase(MPO) of mice in rhein+emodin group were improved(P<0.01); colonic mucosal injury was significantly reduced; the expression of p-PI3 K/PI3 K and p-AKT/AKT proteins were down-regulated(P<0.01). All the above indices were better than those in the rhein/emodin group alone. The Jin's Q-values of the effect of combined rhein and emodin on colon length, TNF-α, IL-6, IL-1β, MPO, p-PI3 K/PI3 K and p-AKT/AKT were all greater than 1.15, which indicated that there was obvious synergistic effect between rhein and emodin. In all, rhein and emodin have synergistic effect in the treatment of UC, and the mechanism may be related to the inhibition of PI3 K/AKT signaling pathway and the down-regulation of proinflammatory factors. They are the new components in the treatment of UC, which is worthy of attention.
Animals
;
Anthraquinones
;
Colitis, Ulcerative/metabolism*
;
Colon
;
Disease Models, Animal
;
Emodin/pharmacology*
;
Interleukin-6/metabolism*
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rheum
;
Tumor Necrosis Factor-alpha/metabolism*
4.Therapeutic mechanism of emodin for treatment of rheumatoid arthritis: a network pharmacology-based analysis.
Chun Hao CAO ; Li ZENG ; Xiao Feng RONG
Journal of Southern Medical University 2022;42(6):913-921
OBJECTIVE:
To investigate the therapeutic mechanism of emodin in the treatment of rheumatoid arthritis (RA) using a network pharmacology-based method and validate this mechanism in a fibroblast-like synovial cell line.
METHODS:
The PubChem, Targetnet, SwissTargetPrediction, Genecards, OMIM, and DisGeNET databases were searched to obtain emodin targets and RA-related genes. A protein-protein interaction (PPI) network was constructed, and GO and KEGG pathway enrichment analyses were carried out to analyze the intersection genes. AutoDock4.2.6 software was used to simulate molecular docking between emodin and its candidate targets. In a cultured fibroblast-like synovial cell line (MH7A), the effects of different concentrations of emodin on proliferation of tumor necrosis factor-α (TNF-α)-induced cells were investigated using CCK-8 assay, cell scratch experiment and flow cytometry; the changes in the expressions of nuclear factor-κB (NF-κB) pathway proteins were detected using Western blotting, and the mRNA expressions of the hub genes were examined with RT-qPCR.
RESULTS:
We identified 32 intersection genes of emodin and RA, and the key targets including CAPS3, ESR1, and MAPK14 involved mainly the NF-κB signaling pathway. Cell scratch experiment and flow cytometry demonstrated a strong inhibitory effect of emodin on MH7A cell proliferation. Treatment with TNF-α significantly increased the cellular expressions of the NF-κB pathway proteins, which were obviously lowered by treatment with 80 μmol/L emodin. The results of RT-qPCR showed that TNF-α treatment obviously up-regulated the expressions of the hub genes COX2 and P38MAPK, and emodin treatment significantly down-regulated the expressions of MAPK and PTGS2 and up-regulated the expression of CASP3.
CONCLUSION
The therapeutic effect of emodin on RA is mediated mainly through regulation of cell proliferation, apoptosis, and the NF-κB pathway.
Arthritis, Rheumatoid/pathology*
;
Emodin/pharmacology*
;
Humans
;
Molecular Docking Simulation
;
NF-kappa B/metabolism*
;
Network Pharmacology
;
Tumor Necrosis Factor-alpha/pharmacology*
5.Mechanism of emodin in relieving neuropathic pain by regulating serum metabolism.
Peng CHEN ; Chen WANG ; Rui-Xi LUO ; Zhi-Bing WU ; Dong-Bin XIA
China Journal of Chinese Materia Medica 2022;47(8):2187-2194
The present study investigated the effect of emodin on the serum metabolite profiles in the chronic constriction injury(CCI) model by non-target metabolomics and explored its analgesic mechanism. Twenty-four Sprague Dawley(SD) rats were randomly divided into a sham group(S), a CCI group(C), and an emodin group(E). The rats in the emodin group were taken emodin via gavage once a day for fifteen days(50 mg·kg~(-1)) on the first day after the CCI surgery. Mechanical withdrawal threshold(MWT) and thermal withdrawal threshold(TWL) in each group were performed before the CCI surgery and 3,7, 11, and 15 days after surgery. After 15 days, blood samples were collected from the abdominal aorta. The differential metabolites were screened out by non-target metabolomics and analyzed with Kyoto Encyclopedia of Genes and Genomes(KEGG) and ingenuity pathway analysis(IPA). From the third day after CCI surgery, the MWT and TWL values were reduced significantly in both CCI group and emodin group, compared with the sham group(P<0.01). At 15 days post-surgery, the MWT and TWL values in emodin group increased significantly compared with the CCI group(P<0.05). As revealed by non-target metabolomics, 72 differential serum metabolites were screened out from the C-S comparison, including 41 up-regulated and 31 down-regulated ones, while 26 differential serum metabolites from E-C comparison, including 10 up-regulated and 16 down-regulated ones. KEGG analysis showed that the differential metabolites in E-C comparison were enriched in the signaling pathways, such as sphingolipid metabolism, arginine biosynthesis, glycerophospholipid metabolism, and tryptophan metabolism. IPA showed that the differential metabolites were mainly involved in the lipid metabolism-molecular transport-small molecule biochemistry network. In conclusion, emodin can exert an analgesic role via regulating sphingolipid metabolism and arginine biosynthesis.
Analgesics/pharmacology*
;
Animals
;
Arginine
;
Emodin/pharmacology*
;
Neuralgia/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Sphingolipids
6.Effects of Emodin Derivative on Cell Cycle, Apoptosis and NF-κB Pathway in Burkitt Lymphoma Cells.
Dan-Feng CHENG ; Bing-Xue YANG ; Wei-Juan LIU ; Chen-Xi QIU ; Jian-Rong LIAO ; Yan-Yan QIU ; Ting-Bo LIU ; Jian-Da HU ; Wen-Feng WANG
Journal of Experimental Hematology 2021;29(2):474-488
OBJECTIVE:
To investigate the effect and mechanism of a novel emodin derivative YX-18 on Burkitt lymphoma (BL) cells.
METHODS:
MTT assay was used to detect the effect of YX-18 on the proliferation of BL cell lines CA46 and Raji. Annexin V-PE/7-AAD double staining assay was used for detecting the effect of YX-18 on the apoptosis of CA46 and Raji cells. PI/RNase staining was used to test the effect of YX-18 on CA46 and Raji cell cycle. JC-1 method was used to measure the changes of mitochondrial membrane potential after YX-18 treatment, and DAPI staining was used to detect the morphology of apoptotic cells. Western blot was used to analyze the distribution changes of NF-κB pathway protein (P65, P-P65, IκB, P-IκB) in the cytoplasm and cell nucleus, and also the expression changes of cyclin-related protein P21, CDK2, P-CDK2, Cycling D1, Cycling E1, and the apoptosis-related protein Caspase-3, Caspase-8, Caspase-9 and the proliferation-related protein C-MYC, BCL-2 by YX-18. Real-time fluorescence-quantitative PCR was used to evaluate the effects of YX-18 on mRNA levels of C-MYC and Ki-67 genes in CA46 and Raji cells, and EBNA-1 and EBER genes of EBV in Raji (EBV
RESULTS:
Novel Emodin derivative YX-18 could effectively inhibit the proliferation of BL cell lines CA46 and Raji, showing a time-dependent effect (24, 48 and 72 h: r
CONCLUSION
The novel emodin derivative YX-18 can significantly inhibit the proliferation of Burkitt lymphoma cells, and induce the cell apoptosis and cycle arrest. The inhibitory effect of YX-18 on the proliferation of Burkitt lymphoma cells may be related with the effect of Caspase apoptosis pathway, the proliferation and apoptosis-related molecules, such as C-MYC and Ki-67, and also to the inhibition of NF-κB pathway.
Apoptosis
;
Burkitt Lymphoma
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
Emodin/pharmacology*
;
Humans
;
NF-kappa B
7.Effects of emodin on lipid accumulation and inflammation in hepatocytes.
Yin-Huan ZHANG ; Xiao-Wei YANG ; Yi-Hang DAI ; Hong-Bin XIAO
China Journal of Chinese Materia Medica 2019;44(13):2820-2826
The aim of this study was to explore the effect of emodin on lipid accumulation and inflammation in hepatocytes. The cell morphology was observed by microscopy. LDH release was detected by the kit. Levels of intracellular lipid droplets were observed by oil red O staining. The contents of TC and TG in cells were detected by the kit. Western blot was used to determine protein expressions of FASN,SREBF2,APOB,IL-6 and p-NF-κB in hepatocytes. The results showed that the levels of L02 cell LDH were significantly increased after being treated with emodin,and the cells showed shrinkage,volume reduction,decrease in quantity with the increase of dose. Red lipid droplets were observed in L02 hepatocytes. Intracellular TC and TG contents of L02 cell increased in a concentrationdependent manner,with significant differences between medium and high-dose groups( P < 0. 05). Protein expressions of FASN,SREBF2,IL-6 and p-NF-κB were significantly higher than those of the control group,and the expression level of APOB was significantly lower than that of the control group( P<0. 05). In conclusion,emodin could induce lipid accumulation and inflammatory damage in hepatocytes in a dose-dependent manner,which in turn could damage liver cells. This process was related to the up-regulation of FASN,SREBF2,IL-6,p-NF-κB,as well as the down-regulation of the protein expression of APOB.
Apolipoprotein B-100
;
metabolism
;
Cells, Cultured
;
Emodin
;
pharmacology
;
Fatty Acid Synthase, Type I
;
metabolism
;
Hepatocytes
;
drug effects
;
metabolism
;
Humans
;
Inflammation
;
Interleukin-6
;
metabolism
;
Lipid Metabolism
;
Lipids
;
NF-kappa B
;
metabolism
;
Sterol Regulatory Element Binding Protein 2
;
metabolism
8.Effect of Emodin Derivative E11 on T Lymphocytic Leukemia Cell Line Molt-4 and Its Possible Mechanisms.
Yu-Ling HUANG ; Wen-Feng WANG ; Jian-Da HU ; Jun-Ting ZHENG ; Jing LI
Journal of Experimental Hematology 2016;24(1):8-13
OBJECTIVETo explore the effect of a new emodin derivative E11 on proliferation and apoptosis of T lymphocytic leukemia cell line Molt-4 and its possible mechanisms.
METHODSMTT method was used to plot cell growth curve. Colony culture assay was performed for studying the effect of emodin derivative E11 on colony-formation of Molt-4. The fluorescent microscopy with DAPI staining was used to examine the cell morphological changes after E11 treatment. DNA fragmentation method was used to detect the inducing effect of emodin derivative E11 on cell apoptosis. Western blot was used to determine the expressions of apoptosis-related proteins including procaspase-9, procaspase-3, PARP and PI3K/AKT, MAPK signalling pathway.
RESULTSEmodin derivative E11 could strongly inhibit the growth of Molt-4 with the IC50 in 48 h at 1.381 ± 0.1552 µmol/L in dose-dependent manner. 0.1 µmol/L of E11 could inhibit cell colony formation. The typrical apopototic morphologic changes of Molt cells treated with E11 could be observed under fluorescence microscope with DAPI staining. DNA apoptotic ladder could be observed by DNA fragmentation.The expressions of procaspase -9, procaspase-3, PARP, p-MAPK, p-AKT, mTOR, p-mTOR, p-P70 and p-4BEP1 were down-regulated, while expressions of MAPK, AKT, 4EBP1 and P70 were not changed remarkably after Molt-4 were treated with E11 for 48 h.
CONCLUSIONE11 can remarkably inhibit the proliferation and induce the apoptosis of Molt-4 cells. The mechanism of apoptosis of Molt-4 cells may be related with the suppression of PI3K/AKT and MAPK signalling pathways.
Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; Down-Regulation ; Emodin ; pharmacology ; Humans ; Leukemia, T-Cell ; pathology ; MAP Kinase Signaling System ; Phosphatidylinositol 3-Kinases ; metabolism ; Poly(ADP-ribose) Polymerases ; metabolism ; Proto-Oncogene Proteins c-akt ; metabolism ; TOR Serine-Threonine Kinases ; metabolism
9.Effect of A Novel Emodin Derivative on Chronic Myelogenous Leukemia K562 Cells and Imatinib-resistant K562/G01 Cells.
Bo-Jun LI ; Ting-Bo LIU ; Wen-Feng WANG ; Min-Hui LIN ; Jian-Da HU
Journal of Experimental Hematology 2016;24(1):1-7
OBJECTIVETo explore the effect of a novel emodin derivative E19 on proliferation inhibition and apoptosis induction of human chronic myelogenous leukemia (CML) cell line K562 and imatinib-resistant CML cell line (K562/G01), and to clarify the involved mechanisms.
METHODSMTT and colony formation test were used to detect the cell proliferation. Apoptotic induction effects were examined by DAPI staining method and DNA ladder assay. Western blot was performed to detect the changes of P210(Bcr-Abl) protein.
RESULTSThe emodin derivative E19 could efficiently inhibit proliferation and induce apoptosis in K562 and K562/G01 cells. IC50 of K562 cells and IC50 of K562/G01 cells were (1.20 ± 0.19) µmol/L and (1.22 ± 0.16) µmol/L, respectively. DNA fragmentation in K562 cells and K562/G01 cells confirmed that the E19 induced apoptosis in dose-dependent manner. Western blot showed that emodin derivative inhibited phosphorylation of P210 protein in K562 cells and K562/G01 cells and down-regulated the expression level of P210 in dose- and time-dependent manners.
CONCLUSIONThe emodin derivative E19 can efficiently inhibit growth and induce apoptosis of K562 cells and K562/G01 cells, while the inhibition of phosphorylation of P210 protein and down-regulation of P210 protein expression may be involved in these processes.
Apoptosis ; drug effects ; Cell Proliferation ; Down-Regulation ; Drug Resistance, Neoplasm ; Emodin ; analogs & derivatives ; pharmacology ; Fusion Proteins, bcr-abl ; metabolism ; Humans ; Imatinib Mesylate ; pharmacology ; K562 Cells ; drug effects ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive ; pathology ; Phosphorylation
10.Antiviral effect of emodin from Rheum palmatum against coxsakievirus B5 and human respiratory syncytial virus in vitro.
Zhao LIU ; Nian MA ; Yan ZHONG ; Zhan-qiu YANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(6):916-922
Viral infections are the major causes of morbidity and mortality in elderly people and young children throughout the world. The most common pathogens include coxsackie virus (CV) and respiratory syncytial virus (RSV). However, no antiviral agents with low toxicity and drug resistance are currently available in clinic therapy. The present study aimed to examine the antiviral activities of emodin (an ingredient of Rheum palmatum) against CVB5 and RSV infections, in an attempt to discover new antiviral agents for virus infection. The monomer emodin was extracted and isolated from Rheum palmatum. The antiviral activities of emodin on HEp-2 cells were evaluated, including virus replication inhibition, virucidal and anti-absorption effects, by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tet-razolium bromide (MTT) assay and plaque reduction assay (PRA). The kinetics of virus inhibition by emodin in a period of 14 h was further determined by plaque assay and quantitative real time PCR (qPCR). Cytokine (IFN-γ, TNF-α) mRNA expressions after emodin treatment (7.5, 15, 30 μmol/L) were also assessed by qPCR post-infection. The results showed that emodin had potent inhibitory activities against CVB5 and RSV, with the 50% effective concentration (EC50) ranging from 13.06 to 14.27 μmol/L and selectivity index (SI) being 5.38-6.41 μmol/L. However, emodin couldn't directly inactivate the viruses or block their absorption to cells. It acted as a biological synthesis inhibitor against CVB4 and RSV in a concentration- and time-dependent manner, especially during the first 0-4 h post-infection. Moreover, emodin could decrease the mRNA expression of IFN-α but enhance TNF-γ expression significantly compared to the viral controls in vitro. Our results provide a molecular basis for development of emodin as a novel and safe antiviral agent for human enterovirus and respiratory virus infection in the clinical therapy.
Antiviral Agents
;
pharmacology
;
Cell Line
;
Cell Line, Tumor
;
Emodin
;
pharmacology
;
Enterovirus B, Human
;
drug effects
;
physiology
;
Humans
;
In Vitro Techniques
;
Respiratory Syncytial Viruses
;
drug effects
;
physiology
;
Rheum
;
chemistry
;
Virus Replication

Result Analysis
Print
Save
E-mail