1.Mitochondria derived from human embryonic stem cell-derived mesenchymal stem cells alleviate the inflammatory response in human gingival fibroblasts.
Bicong GAO ; Chenlu SHEN ; Kejia LV ; Xuehui LI ; Yongting ZHANG ; Fan SHI ; Hongyan DIAO ; Hua YAO
Journal of Zhejiang University. Science. B 2025;26(8):778-788
Periodontitis is a common oral disease caused by bacteria coupled with an excessive host immune response. Stem cell therapy can be a promising treatment strategy for periodontitis, but the relevant mechanism is complicated. This study aimed to explore the therapeutic potential of mitochondria from human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs) for the treatment of periodontitis. The gingival tissues of periodontitis patients are characterized by abnormal mitochondrial structure. Human gingival fibroblasts (HGFs) were exposed to 5 μg/mL lipopolysaccharide (LPS) for 24 h to establish a cell injury model. When treated with hESC-MSCs or mitochondria derived from hESC-MSCs, HGFs showed reduced expression of inflammatory genes, increased adenosine triphosphate (ATP) level, decreased reactive oxygen species (ROS) production, and enhanced mitochondrial function compared to the control. The average efficiency of isolated mitochondrial transfer by hESC-MSCs was determined to be 8.93%. Besides, a therapy of local mitochondrial injection in mice with LPS-induced periodontitis showed a reduction in inflammatory gene expression, as well as an increase in both the mitochondrial number and the aspect ratio in gingival tissues. In conclusion, our results indicate that mitochondria derived from hESC-MSCs can reduce the inflammatory response and improve mitochondrial function in HGFs, suggesting that the transfer of mitochondria between hESC-MSCs and HGFs serves as a potential mechanism underlying the therapeutic effect of stem cells.
Humans
;
Gingiva/cytology*
;
Fibroblasts/metabolism*
;
Mitochondria/physiology*
;
Mesenchymal Stem Cells/cytology*
;
Animals
;
Periodontitis/therapy*
;
Mice
;
Reactive Oxygen Species/metabolism*
;
Inflammation
;
Lipopolysaccharides
;
Human Embryonic Stem Cells/cytology*
;
Cells, Cultured
;
Adenosine Triphosphate/metabolism*
;
Male
2.Mechanism of human embryonic stem cell-derived mesenchymal stem cells on alleviating brain injury after cardiopulmonary resuscitation in swine with cardiac arrest.
Feng GE ; Jiefeng XU ; Jinjiang ZHU ; Guangli CAO ; Xuguang WANG ; Meiya ZHOU ; Tiejiang CHEN ; Mao ZHANG
Chinese Critical Care Medicine 2025;37(2):133-139
OBJECTIVE:
To investigate the mechanism of human embryonic stem cell-derived mesenchymal stem cells (hESC-MSC) in alleviating brain injury after resuscitation in swine with cardiac arrest (CA).
METHODS:
Twenty-nine healthy male large white swine were randomly divided into Sham group (n = 9), cardiopulmonary resuscitation (CPR) group (n = 10) and hESC-MSC group (n = 10). The Sham group only completed animal preparation. In CPR group and hESC-MSC group, the swine model of CA-CPR was established by inducing ventricular fibrillation for 10 minutes with electrical stimulation and CPR for 6 minutes. At 5 minutes after successful resuscitation, hESC-MSC 2.5×106/kg was injected via intravenous micropump within 1 hour in hESC-MSC group. Venous blood samples were collected before resuscitation and at 4, 8, 24, 48 and 72 hours of resuscitation. The levels of neuron specific enolase (NSE) and S100B protein (S100B) were detected by enzyme linked immunosorbent assay (ELISA). At 24, 48 and 72 hours of resuscitation, neurological deficit score (NDS) and cerebral performance category (CPC) were used to evaluate the neurological function of the animals. Three animals from each group were randomly selected and euthanized at 24, 48, and 72 hours of resuscitation, and the hippocampus tissues were quickly obtained. Immunofluorescence staining was used to detect the distribution of hESC-MSC in hippocampus. Immunohistochemical staining was used to detect the activation of astrocytes and microglia and the survival of neurons in the hippocampus. The degree of apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL).
RESULTS:
The serum NSE and S100B levels of brain injury markers in CPR group and hESC-MSC group were significantly higher than those in Sham group at 24 hours of resuscitation, and then gradually increased. The levels of NSE and S100B in serum at each time of resuscitation in hESC-MSC group were significantly lower than those in CPR group [NSE (μg/L): 20.69±3.62 vs. 28.95±3.48 at 4 hours, 27.04±5.56 vs. 48.59±9.22 at 72 hours; S100B (μg/L): 2.29±0.39 vs. 3.60±0.73 at 4 hours, 2.38±0.15 vs. 3.92±0.50 at 72 hours, all P < 0.05]. In terms of neurological function, compared with the Sham group, the NDS score and CPC score in the CPR group and hESC-MSC group increased significantly at 24 hours of resuscitation, and then gradually decreased. The NDS and CPC scores of hESC-MSC group were significantly lower than those of CPR group at 24 hours of resuscitation (NDS: 111.67±20.21 vs. 170.00±21.79, CPC: 2.33±0.29 vs. 3.00±0.00, both P < 0.05). The expression of hESC-MSC positive markers CD73, CD90 and CD105 in the hippocampus of hESC-MSC group at 24, 48 and 72 hours of resuscitation was observed under fluorescence microscope, indicating that hESC-MSC could homing to the damaged hippocampus. In addition, compared with Sham group, the proportion of astrocytes, microglia and apoptotic index in hippocampus of CPR group were significantly increased, and the proportion of neurons was significantly decreased at 24, 48 and 72 hours of resuscitation. Compared with CPR group, the proportion of astrocytes, microglia and apoptotic index in hippocampus of hESC-MSC group decreased and the proportion of neurons increased significantly at 24 hours of resuscitation [proportion of astrocytes: (14.33±1.00)% vs. (30.78±2.69)%, proportion of microglia: (12.00±0.88)% vs. (27.89±5.68)%, apoptotic index: (12.89±3.86)% vs. (52.33±7.77)%, proportion of neurons: (39.44±3.72)% vs. (28.33±1.53)%, all P < 0.05].
CONCLUSIONS
Application of hESC-MSC at the early stage of resuscitation can reduce the brain injury and neurological dysfunction after resuscitation in swine with CA. The mechanism may be related to the inhibition of immune cell activation, reduction of cell apoptosis and promotion of neuronal survival.
Animals
;
Heart Arrest/therapy*
;
Cardiopulmonary Resuscitation
;
Swine
;
Humans
;
Male
;
Human Embryonic Stem Cells/cytology*
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells/cytology*
;
Phosphopyruvate Hydratase/blood*
;
Brain Injuries/therapy*
;
S100 Calcium Binding Protein beta Subunit
;
Apoptosis
;
Disease Models, Animal
3.Construction of a Sox17 activation vector based on the CRISPR/dCas9 system and its validation in sheep embryonic stem cells.
Wenli LÜ ; Hua YANG ; Hui XU ; Yanli ZHANG
Chinese Journal of Biotechnology 2025;41(7):2707-2718
The CRISPR/dCas9 system is a gene editing tool that has proven to be highly efficient and precise. By utilizing transcriptional activators, such as VP64, p65, and Rta, the system can effectively and stably activate target genes. Sox17, a transcription factor belonging to the SOX family, plays a crucial role in the differentiation of the germ layers and the determination of cell fates during the early stages of embryonic development. Sheep embryonic stem cells (sESCs) are characterized by their capacity for self-renewal and multidirectional differentiation, serving as a significant in vitro model for studying the mechanisms of cell differentiation during early embryonic development. However, the importing of exogenous genes into sESCs is challenging due to their unique growth characteristics. The objective of this study was to investigate the conditions necessary for successfully activating Sox17 in sESCs. To this end, we employed the CRISPR/dCas9 system along with liposome transfection, lentivirus invasion, and electroporation to activate Sox17 in sESCs. The expression of Sox17 was then determined by fluorescence quantitative PCR, on the basis of which the performance of different transfection methods was compared. The results indicated that the electroporation group had the best transfection effect and the highest Sox17 expression among the three transfection methods. The efficient and stable gene activation protocol will provide a reference for embryonic stem cell research in other species, especially livestock animals, and lay the foundation for the subsequent study of gene function and realization of precise cell fate regulation by regulating gene expression in sheep embryonic stem cells.
Animals
;
CRISPR-Cas Systems/genetics*
;
Sheep
;
SOXF Transcription Factors/genetics*
;
Embryonic Stem Cells/cytology*
;
Genetic Vectors/genetics*
;
Cell Differentiation/genetics*
;
Transfection
;
Gene Editing/methods*
4.BMP4 preserves the developmental potential of mESCs through Ube2s- and Chmp4b-mediated chromosomal stability safeguarding.
Mingzhu WANG ; Kun ZHAO ; Meng LIU ; Mengting WANG ; Zhibin QIAO ; Shanru YI ; Yonghua JIANG ; Xiaochen KOU ; Yanhong ZHAO ; Jiqing YIN ; Tianming LI ; Hong WANG ; Cizhong JIANG ; Shaorong GAO ; Jiayu CHEN
Protein & Cell 2022;13(8):580-601
Chemically defined medium is widely used for culturing mouse embryonic stem cells (mESCs), in which N2B27 works as a substitution for serum, and GSK3β and MEK inhibitors (2i) help to promote ground-state pluripotency. However, recent studies suggested that MEKi might cause irreversible defects that compromise the developmental potential of mESCs. Here, we demonstrated the deficient bone morphogenetic protein (BMP) signal in the chemically defined condition is one of the main causes for the impaired pluripotency. Mechanistically, activating the BMP signal pathway by BMP4 could safeguard the chromosomal integrity and proliferation capacity of mESCs through regulating downstream targets Ube2s and Chmp4b. More importantly, BMP4 promotes a distinct in vivo developmental potential and a long-term pluripotency preservation. Besides, the pluripotent improvements driven by BMP4 are superior to those by attenuating MEK suppression. Taken together, our study shows appropriate activation of BMP signal is essential for regulating functional pluripotency and reveals that BMP4 should be applied in the serum-free culture system.
Animals
;
Bone Morphogenetic Protein 4/metabolism*
;
Cell Differentiation
;
Chromosomal Instability
;
Endosomal Sorting Complexes Required for Transport
;
Mice
;
Mitogen-Activated Protein Kinase Kinases/metabolism*
;
Mouse Embryonic Stem Cells/cytology*
;
Pluripotent Stem Cells/cytology*
;
Signal Transduction
;
Ubiquitin-Conjugating Enzymes
5.Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration.
Li-Ning SU ; Xiao-Qing SONG ; Zhan-Xia XUE ; Chen-Qing ZHENG ; Hai-Feng YIN ; Hui-Ping WEI
Journal of Zhejiang University. Science. B 2018;19(4):293-304
Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, the regulatory networks involved have not been fully elucidated. In the present study, we analyzed a regulatory network of 51 miRNAs, 27 TFs, and 59 target genes, which is involved in axon regeneration. We identified 359 pairs of feed-forward loops (FFLs), seven important genes (Nap1l1, Arhgef12, Sema6d, Akt3, Trim2, Rab11fip2, and Rps6ka3), six important miRNAs (hsa-miR-204-5p, hsa-miR-124-3p, hsa-miR-26a-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-15b-5p), and eight important TFs (Smada2, Fli1, Wt1, Sp6, Sp3, Smad4, Smad5, and Creb1), which appear to play an important role in axon regeneration. Functional enrichment analysis revealed that axon-associated genes are involved mainly in the regulation of cellular component organization, axonogenesis, and cell morphogenesis during neuronal differentiation. However, these findings need to be validated by further studies.
Axons/physiology*
;
Cell Differentiation
;
Cluster Analysis
;
Embryonic Stem Cells/cytology*
;
Gene Expression Profiling
;
Gene Expression Regulation
;
Gene Regulatory Networks
;
Humans
;
MicroRNAs/metabolism*
;
Nerve Regeneration
;
Neurons/metabolism*
;
Software
;
Transcription Factors/metabolism*
6.CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells.
Ping WANG ; Zunpeng LIU ; Xiaoqian ZHANG ; Jingyi LI ; Liang SUN ; Zhenyu JU ; Jian LI ; Piu CHAN ; Guang-Hui LIU ; Weiqi ZHANG ; Moshi SONG ; Jing QU
Protein & Cell 2018;9(11):945-965
Vascular cell functionality is critical to blood vessel homeostasis. Constitutive NF-κB activation in vascular cells results in chronic vascular inflammation, leading to various cardiovascular diseases. However, how NF-κB regulates human blood vessel homeostasis remains largely elusive. Here, using CRISPR/Cas9-mediated gene editing, we generated RelA knockout human embryonic stem cells (hESCs) and differentiated them into various vascular cell derivatives to study how NF-κB modulates human vascular cells under basal and inflammatory conditions. Multi-dimensional phenotypic assessments and transcriptomic analyses revealed that RelA deficiency affected vascular cells via modulating inflammation, survival, vasculogenesis, cell differentiation and extracellular matrix organization in a cell type-specific manner under basal condition, and that RelA protected vascular cells against apoptosis and modulated vascular inflammatory response upon tumor necrosis factor α (TNFα) stimulation. Lastly, further evaluation of gene expression patterns in IκBα knockout vascular cells demonstrated that IκBα acted largely independent of RelA signaling. Taken together, our data reveal a protective role of NF-κB/RelA in modulating human blood vessel homeostasis and map the human vascular transcriptomic landscapes for the discovery of novel therapeutic targets.
Blood Vessels
;
cytology
;
metabolism
;
CRISPR-Cas Systems
;
Embryonic Stem Cells
;
cytology
;
Gene Knockout Techniques
;
Homeostasis
;
Humans
;
NF-kappa B
;
deficiency
;
metabolism
;
Transcription Factor RelA
;
deficiency
;
metabolism
7.Pluripotent stem cells secrete Activin A to improve their epiblast competency after injection into recipient embryos.
Jinzhu XIANG ; Suying CAO ; Liang ZHONG ; Hanning WANG ; Yangli PEI ; Qingqing WEI ; Bingqiang WEN ; Haiyuan MU ; Shaopeng ZHANG ; Liang YUE ; Genhua YUE ; Bing LIM ; Jianyong HAN
Protein & Cell 2018;9(8):717-728
It is not fully clear why there is a higher contribution of pluripotent stem cells (PSCs) to the chimera produced by injection of PSCs into 4-cell or 8-cell stage embryos compared with blastocyst injection. Here, we show that not only embryonic stem cells (ESCs) but also induced pluripotent stem cells (iPSCs) can generate F0 nearly 100% donor cell-derived mice by 4-cell stage embryo injection, and the approach has a "dose effect". Through an analysis of the PSC-secreted proteins, Activin A was found to impede epiblast (EPI) lineage development while promoting trophectoderm (TE) differentiation, resulting in replacement of the EPI lineage of host embryos with PSCs. Interestingly, the injection of ESCs into blastocysts cultured with Activin A (cultured from 4-cell stage to early blastocyst at E3.5) could increase the contribution of ESCs to the chimera. The results indicated that PSCs secrete protein Activin A to improve their EPI competency after injection into recipient embryos through influencing the development of mouse early embryos. This result is useful for optimizing the chimera production system and for a deep understanding of PSCs effects on early embryo development.
Activins
;
metabolism
;
Animals
;
Cells, Cultured
;
Embryonic Development
;
Germ Layers
;
metabolism
;
Mice
;
Pluripotent Stem Cells
;
cytology
;
metabolism
8.Differentiation of pluripotent stem cells into male germ cells: An update.
Shi-Yu WANG ; Yu-Gui CUI ; Lian-Ju QIN
National Journal of Andrology 2017;23(5):468-472
Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the potential of differentiating into all types of adult cells. Today, mature functional sperm can be derived from mouse PSCs in vitro, and meanwhile primordial germ cells (PGCs) and meiotic prophase sperm cells can be generated from human ESCs/iPSCs (hESCs/hiPSCs). It is proposed that non-genetic azoospermia might be cured if functional sperm could be obtained from human PSCs (hPSCs) in vitro. It is also possible that healthy functional sperm could be derived from the patient with genetic factor-induced azoospermia by combining iPSCs and gene editing technology. IPSC-derived functional sperm have a higher clinical value for the avoidance of the sperm source and the issue of medical ethics. This article summarizes recent advances in the differentiation of PSCs into male germ cells in vitro, aiming to provide some reference for the treatment of male infertility with PSCs.
Animals
;
Cell Differentiation
;
Embryonic Stem Cells
;
cytology
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
Infertility, Male
;
therapy
;
Male
;
Meiosis
;
Mice
;
Pluripotent Stem Cells
;
cytology
;
Spermatozoa
;
cytology
9.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
10.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism

Result Analysis
Print
Save
E-mail