1.Thymosin β4 impeded murine stem cell proliferation with an intact cardiovascular differentiation.
Li NIE ; Shi-Jun GAO ; Ya-Nan ZHAO ; Jacob MASIKA ; Hong-Yan LUO ; Xin-Wu HU ; Liang-Pin ZHANG ; Ying ZENG ; Jürgen HESCHELER ; Hua-Min LIANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):328-334
Thymosin β4 (Tβ4) is a key factor in cardiac development, growth, disease, epicardial integrity, blood vessel formation and has cardio-protective properties. However, its role in murine embryonic stem cells (mESCs) proliferation and cardiovascular differentiation remains unclear. Thus we aimed to elucidate the influence of Tβ4 on mESCs. Target genes during mESCs proliferation and differentiation were detected by real-time PCR or Western blotting, and patch clamp was applied to characterize the mESCs-derived cardiomyocytes. It was found that Tβ4 decreased mESCs proliferation in a partial dose-dependent manner and the expression of cell cycle regulatory genes c-myc, c-fos and c-jun. However, mESCs self-renewal markers Oct4 and Nanog were elevated, indicating the maintenance of self-renewal ability in these mESCs. Phosphorylation of STAT3 and Akt was inhibited by Tβ4 while the expression of RAS and phosphorylation of ERK were enhanced. No significant difference was found in BMP2/BMP4 or their downstream protein smad. Wnt3 and Wnt11 were remarkably decreased by Tβ4 with upregulation of Tcf3 and constant β-catenin. Under mESCs differentiation, Tβ4 treatment did not change the expression of cardiovascular cell markers α-MHC, PECAM, and α-SMA. Neither the electrophysiological properties of mESCs-derived cardiomyocytes nor the hormonal regulation by Iso/Cch was affected by Tβ4. In conclusion, Tβ4 suppressed mESCs proliferation by affecting the activity of STAT3, Akt, ERK and Wnt pathways. However, Tβ4 did not influence the in vitro cardiovascular differentiation.
Animals
;
Cell Cycle
;
drug effects
;
genetics
;
Cell Differentiation
;
drug effects
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Dose-Response Relationship, Drug
;
Extracellular Signal-Regulated MAP Kinases
;
genetics
;
metabolism
;
Gene Expression Regulation
;
drug effects
;
JNK Mitogen-Activated Protein Kinases
;
genetics
;
metabolism
;
Mice
;
Mouse Embryonic Stem Cells
;
cytology
;
drug effects
;
metabolism
;
Myocytes, Cardiac
;
cytology
;
drug effects
;
metabolism
;
Nanog Homeobox Protein
;
genetics
;
metabolism
;
Octamer Transcription Factor-3
;
genetics
;
metabolism
;
Patch-Clamp Techniques
;
Primary Cell Culture
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-fos
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-myc
;
genetics
;
metabolism
;
STAT3 Transcription Factor
;
genetics
;
metabolism
;
Signal Transduction
;
Thymosin
;
pharmacology
2.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
3.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
4.The effects of trichloroethylene on cardiac differentiation in human embryonic stem cells and its mechanisms.
Dan WANG ; Tao CHEN ; Guo-qing WANG ; Yan JANG
Chinese Journal of Applied Physiology 2015;31(3):216-224
OBJECTIVETo explore the effects of trichloroethylene (TCE) on cardiac developmental differentiation in human embryonic stem cells.
METHODSIn this study, based on the human embryonic stem cells in vitro cardiac differentiation assay, we investigated the potential effect of TCE exposure on the cardiac toxicity in embryo development. Human embryonic stem cells were treated with TCE at different concentrations of 100 ppb, 1 ppm, and 10 ppm and dimethyl sulfoxide(DMSO) treated as control. The MTT assay was performed to examine the cytoplasmic toxicity of TCE exposure. The beating percentages were recorded and the expression of cardiac specific gene was evaluated by PCR or flow cytometry. Also, real time PCR was performed to verify the micro array analysis on the expression level changes of genes which were involved in the Ca2+ signal pathways.
RESULTSCompared with the control group, there was no significant difference in cell viability when cells were treated with TCE at the concentrations of 100 ppb, 1 ppm, and 10 ppm. However, TCE could inhibit the expression of cTnT protein in a concentration-dependant manner. And the most interestingly, TCE significantly inhibited the cardiac differentiation characterized by the decrease beating percentages. Genes involved in Ca2+ signaling pathway were severely disrupted by TCE.
CONCLUSIONTCE inhibited the cardiac specific differentiation of human embryonic stem cell and at the meanwhile the genes responsible for Ca2+ signaling pathway were severely disrupted, which could contribute the severe effects of TCE cardiotoxicity.
Calcium Signaling ; Cell Differentiation ; Cells, Cultured ; Embryonic Development ; Embryonic Stem Cells ; cytology ; drug effects ; Heart ; embryology ; Humans ; Trichloroethylene ; toxicity
5.Effects of Zuogui pill, Yougui pill and relative compositions on differentiation towards germ cells of mouse embryonic stem cell 1B10.
Zou-ying YAO ; Qian WAN ; Hua LU ; Xia LIU
China Journal of Chinese Materia Medica 2015;40(3):495-500
OBJECTIVETo investigate the effects of Zuogui pill, Yougui pill and the relative compositions on the differentiation towards germ cells of stem cells.
METHODThe rat drug sera for Zuogui pill, Yougui pill and the common composition of Zuogui pill and Yougui pill were prepared respectively as the experimental drugs; the mouse embryonic stem cell 1B10 (MESC-1B10) was used as the representative of stem cells; the above rat drug sera were used to intervene MESC-1B10 and the process was traced by microscopy imaging; after 72 h of the intervention, the RNAs were extracted from the different intervened MESC-1B10, cDNAs were synthesized immediately and finally the Real-time quantitative PCR (qPCR) was used to measure the expression patterns of the 10 reproductive-differentiation-related genes for each intervention.
RESULTThe rat drug serum of Zuogui pill (ZGW-RS) significantly up-regulated Oct-4 and SCP3 and significantly down-regulated GDF-9 and Stra8; the rat drug serum of Yougui pill (ZGW-RS) significantly up-regulated Oct-4, GDF-9, Mvh and SCP3 and significantly down-regulated Stra8, Itga6 and Itgb1; the rat drug sera for the common composition of Zuogui pill and Yougui pill (ZGWYGW-RS) significantly up-regulated Oct-4, SCP3 and ZP3 and significantly down-regulated GDF-9, Stra8, Itga6 and Itgb1.
CONCLUSIONZGW-RS can initiate the change towards meiosis, but can not start the reproductive differentiation of MESC-1B10; YGW-RS can initiate the change towards meiosis, and can also start the reproductive differentiation of MESC-1B10 towards female germ cells; ZGWYGW-RS can initiate the change towards meiosis, and can lightly start the reproductive differentiation of MESC-1B10 towards female germ cells but the inductive effect is smaller than YGW-RS. The experimental results, on one hand, strengthen the knowledge about the influence of the relative compositions of Zuogui pill and Yougui pill on the reproductive differentiation of stem cells, on the other hand, help to explain the mechanism of the treatment of the infertility by Zuogui pill and Yougui pill.
Animals ; Cell Differentiation ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Embryonic Stem Cells ; cytology ; drug effects ; Female ; Germ Cells ; cytology ; drug effects ; Infertility ; drug therapy ; Male ; Mice ; NIH 3T3 Cells ; Rats ; Rats, Sprague-Dawley
6.Functions of retinoic acid on the biological characteristics of human embryonic stem cells.
Xin FU ; Wenbo LIU ; Fangnan XIE ; Ran XIAO
Chinese Journal of Plastic Surgery 2014;30(3):191-196
OBJECTIVETo analyze the influence of retinoic acid (RA) on the undifferentiated state and EB formation abilities of human embryonic stem cells.
METHODSThe biological characteristics of H9 ESCs after RA treatment were characterized by real-time PCR, MTS proliferation assay and immunofluorescence staining. The expression of three germ layers markers, osteogenic differentiation markers and adipogenic differentiation markers in H9-differentiated embryoid bodies (EBs) with RA treatment were quantified by real time PCR.
RESULTSThe proliferation of H9 ESCs in the early logarithmic growth phase was accelerated by RA treatment. In addition, RA induced differentiation of H9 ESC coupled with morphology changes, decreased expression of undifferentiated markers Oct4, Nanog, Sox2 and OCT4 mRNA binding protein Lin28 at mRNA level, and reduced expression of Oct4 at protein level. RA induced formation of cavities in EBs. Real time PCR results showed that the expressions of ectodermal markers: NeuroD1, Noggin; mesodermal markers: Brachyury, Twist and endodermal markers: AFP, GATA-4 were significantly increased (P < 0.05), especially for AFP (P < 0.01), by RA treatment in a dose-dependent manner. In addition, the expression of adipogenic differentiation marker C/EBPalpha was increased while the osteogenic differentiation marker OPN was decreased in EBs after RA treatment for 5 days.
CONCLUSIONSHigh concentrations of RA induced the loss of stemness in H9 ESCs and excessive differentiation in EBs, and damaged the balance between osteogenic and adipogenic differentiation during early EB differentiation, which may be relevant to the congenital malformations.
Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Embryonic Stem Cells ; cytology ; drug effects ; Humans ; Tretinoin ; pharmacology
7.Toxic effects of methylmercury, arsanilic acid and danofloxacin on the differentiation of mouse embryonic stem cells into neural cells.
Seok Jin KANG ; Sang Hee JEONG ; Eun Joo KIM ; Young Il PARK ; Sung Won PARK ; Hyo Sook SHIN ; Seong Wan SON ; Hwan Goo KANG
Journal of Veterinary Science 2014;15(1):61-71
This study was performed to assess the neurotoxic effects of methylmercury, arsanilic acid and danofloxacin by quantification of neural-specific proteins in vitro. Quantitation of the protein markers during 14 days of differentiation indicated that the mouse ESCs were completely differentiated into neural cells by Day 8. The cells were treated with non-cytotoxic concentrations of three chemicals during differentiation. Low levels of exposure to methylmercury decreased the expression of GABAA-R and Nestin during the differentiating stage, and Nestin during the differentiated stage. In contrast, GFAP, Tuj1, and MAP2 expression was affected only by relatively high doses during both stages. Arsanilic acid affected the levels of GABA(A)-R and GFAP during the differentiated stage while the changes of Nestin and Tuj1 were greater during the differentiating stage. For the neural markers (except Nestin) expressed during both stages, danofloxacin affected protein levels at lower concentrations in the differentiated stage than the differentiating stage. Acetylcholinesterase activity was inhibited by relatively low concentrations of methylmercury and arsanilic acid during the differentiating stage while this activity was inhibited only by more than 40 microM of danofloxacin in the differentiated stage. Our results provide useful information about the different toxicities of chemicals and the impact on neural development.
Acetylcholinesterase/metabolism
;
Animals
;
Arsanilic Acid/*toxicity
;
Cell Differentiation/*drug effects
;
Embryonic Stem Cells/cytology/*drug effects
;
Environmental Pollutants/*toxicity
;
Fluorescent Antibody Technique
;
Fluoroquinolones/*toxicity
;
Gene Expression Regulation/drug effects
;
Methylmercury Compounds/*toxicity
;
Mice
;
Nerve Tissue Proteins/metabolism
;
Neurons/cytology/*drug effects
;
Tetrazolium Salts/metabolism
;
Thiazoles/metabolism
8.Mouse A6-positive hepatic oval cells derived from embryonic stem cells.
Dong-zhi YIN ; Ji-ye CAI ; Qi-chang ZHENG ; Zheng-wei CHEN ; Jing-xian ZHAO ; You-neng YUAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):1-9
Oval cells have a potential to differentiate into a variety of cell lineages including hepatocytes and biliary epithelia. Several models have been established to activate the oval cells by incorporating a variety of toxins and carcinogens, alone or combined with surgical treatment. Those models are obviously not suitable for the study on human hepatic oval cells. It is necessary to establish a new and efficient model to study the human hepatic oval cells. In this study, the hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were used to induce differentiation of mouse embryonic stem (ES) cells into hepatic oval cells. We first confirmed that hepatic oval cells derived from ES cells, which are bipotential, do exist during the course of mouse ES cells' differentiation into hepatic parenchymal cells. RT-PCR and transmission electron microscopy were applied in this study. The ratio of Sca-1+/CD34+ cells sorted by FACS in the induction group was increased from day 4 and reached the maximum on the day 8, whereas that in the control group remained at a low level. The differentiation ratio of Sca-1+/CD34+ cells in the induction group was significantly higher than that in the control group. About 92.48% of the sorted Sca-1+/CD34+ cells on the day 8 were A6 positive. Highly purified A6+/Sca-1+/CD34+ hepatic oval cells derived from ES cells could be obtained by FACS. The differentiation ratio of hepatic oval cells in the induction group (up to 4.46%) was significantly higher than that in the control group. The number of hepatic oval cells could be increased significantly by HGF and EGF. The study also examined the ultrastructures of ES-derived hepatic oval cells' membrane surface by atomic force microscopy. The ES-derived hepatic oval cells cultured and sorted by our protocols may be available for the future clinical application.
Animals
;
Antigens, CD34
;
genetics
;
metabolism
;
Antigens, Ly
;
genetics
;
metabolism
;
Cell Differentiation
;
drug effects
;
genetics
;
physiology
;
Cell Line
;
Embryonic Stem Cells
;
cytology
;
metabolism
;
ultrastructure
;
Epidermal Growth Factor
;
pharmacology
;
Flow Cytometry
;
Gene Expression Regulation, Developmental
;
drug effects
;
Hepatocyte Growth Factor
;
pharmacology
;
Liver
;
cytology
;
metabolism
;
Membrane Proteins
;
genetics
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Microfilament Proteins
;
metabolism
;
Microscopy, Atomic Force
;
Microscopy, Electron, Transmission
;
Reverse Transcriptase Polymerase Chain Reaction
;
Stem Cells
;
cytology
;
metabolism
;
ultrastructure
;
Time Factors
9.Propofol inhibits neuronal differentiation of mouse embryonic stem cells in vitro.
Hao WANG ; Zhe LUO ; Zhang-Gang XUE ; Jing CANG
Chinese Medical Journal 2013;126(21):4186-4188
10.Paraquat involves differentiation of human neural stem cells via Notch signaling.
Xiu-Li CHANG ; Wen LU ; Ting-ting DOU ; Xia SUN ; Zhi-jun ZHOU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2013;31(7):492-495
OBJECTIVETo investigate effects of paraquat on the mRNA expression of key elements of Notch signaling (Notch1, Jagged1 and DTX1) during differentiation process of human neural stem cells (hNSCs).
METHODShNSCs exposed to PQ at the concentrations 0.10, 1.00, 10.00 M. Cell proliferation ability was assessed using MTT assay and mRNA expressions of Notch1, Jagged1 and DTX1 were detected by Real-time RT-PCR at 2, 4, 8, 12 d of differentiation.
RESULTSCompared with control group, NOTCH1, JAG1 mRNA expression levels exposed to PQ at the concentration of 0.10 M significantly reduced at 2, 4, 8 d and significantly went up at 12d (P < 0.01). Compared with control group, NOTCH1, JAG1 and DTX1 mRNA expression levels exposed to PQ at the concentration of 10.00 M significantly reduced at 2, 8, 12 d (P < 0.01). PQ could down-regulate Notch1, Jagged1 and DTX1 mRNA expressions at the early stage of differentiation, then up-regulate Notch1 mRNA expression, and down-regulate Notch1, Jagged1 and DTX1 mRNA expressions at the end of differentiation.
CONCLUSIONNotch signaling pathway may be involved in differentiation of neural stem cell exposed to PQ.
Calcium-Binding Proteins ; metabolism ; Cell Differentiation ; drug effects ; Cells, Cultured ; Embryonic Stem Cells ; cytology ; drug effects ; metabolism ; Humans ; Intercellular Signaling Peptides and Proteins ; metabolism ; Jagged-1 Protein ; Membrane Proteins ; metabolism ; Neural Stem Cells ; cytology ; drug effects ; metabolism ; Paraquat ; pharmacology ; Receptor, Notch1 ; metabolism ; Serrate-Jagged Proteins ; Signal Transduction ; drug effects ; Ubiquitin-Protein Ligases ; metabolism

Result Analysis
Print
Save
E-mail