1.Biallelic mutations in CDC20 cause female infertility characterized by abnormalities in oocyte maturation and early embryonic development.
Lin ZHAO ; Songguo XUE ; Zhongyuan YAO ; Juanzi SHI ; Biaobang CHEN ; Ling WU ; Lihua SUN ; Yao XU ; Zheng YAN ; Bin LI ; Xiaoyan MAO ; Jing FU ; Zhihua ZHANG ; Jian MU ; Wenjing WANG ; Jing DU ; Shuai LIU ; Jie DONG ; Weijie WANG ; Qiaoli LI ; Lin HE ; Li JIN ; Xiaozhen LIANG ; Yanping KUANG ; Xiaoxi SUN ; Lei WANG ; Qing SANG
Protein & Cell 2020;11(12):921-927
2.Retinoic acid signal pathway regulation of zebra fish tooth development through manipulation of the differentiation of neural crest.
Xin LIU ; Xing HUANG ; Zhiyun XU ; Deqin YANG
West China Journal of Stomatology 2016;34(2):115-120
OBJECTIVETo investigate the mechanism of retinoic acid (RA) signal in dental evolution, RA is used to explore the influence of the mechanism on neural crest's migration during the early stage of zebra fish embryos.
METHODSWe divided embryos of wild type and transgenic line zebra fish into three groups. 1 x 10(-7) to 6 x 10(-7) mol x L(-1) RA and 1 x 10(-7) mo x L(-1) 4-diethylaminobenzaldehyde (DEAB) were added into egg water at 24 hpf for 9 h. Dimethyl sulfoxid (DMSO) with the concentration was used as control group. Then, antisense probes of dlx2a, dlx2b, and barxl were formulated to perform whole-mount in situ hybridization to check the expressions of the genes in 48 hpf to 72 hpf embryos. We observed fluorescence of transgenic line in 4 dpf embryos.
RESULTSWe obtained three mRNA probes successfully. Compared with DMSO control group, a low concentration (1 x 10(-7) mol x L(-1)) of RA could up-regulate the expression of mRNA (barx1, dlx2a) in neural crest. Obvious migration trend was observed toward the pharyngeal arch in which teeth adhered. Transgenic fish had spreading fluorescence tendency in pharyngeal arch. However, a high concentration (4 x 10(-7) mol x L(-1)) of RA malformed the embryos and killed them after treatment. One third of the embryos of middle concentration (3 x 10(-7) mo x L(-1)) exhibited delayed development. DEAB resulted in neural crest dysplasia. The expression of barxl and dlx2a were suppressed, and the appearance of dlx2b in tooth was delayed.
CONCLUSIONRA signal pathway can regulate the progenitors of tooth by controlling the growth of the neural crest and manipulating tooth development
Animals ; Branchial Region ; Cell Differentiation ; drug effects ; Embryo, Nonmammalian ; drug effects ; embryology ; metabolism ; In Situ Hybridization ; Neural Crest ; drug effects ; Odontogenesis ; Signal Transduction ; Tooth ; drug effects ; embryology ; metabolism ; Tretinoin ; pharmacology ; Zebrafish ; embryology ; genetics ; metabolism
3.Myeloid and erythroid hematopoietic transcription factor expression decline after knockdown ofgenes in zebrafish embryos.
Shifang HOU ; Zhihua WANG ; Jun WANG ; Zhixu HE ; Liping SHU ;
Journal of Zhejiang University. Medical sciences 2016;45(6):620-625
To investigate the effect ofgene down-regulation on early hematopoietic development of zebrafish.Phosphorodiamidate morpholino oligomer (PMO) technology was used to downregulategene expression in Zebrafish. Zebrafish embryos injected phosphorodiamidate morpholino antisense oligonucleotide ofgene mRNA by microinjection at unicellular stage were taken as the experimental group, and those injected meaningless phosphorodiamidate morpholino antisense oligonucleotide were taken as the control. The embryos were collected at 18, 24, 30 and 36 hpf after the fertilization. The real-time fluorescent quantitative PCR (RT-PCR) and whole embryohybridization methods were used to detect the expression of myeloid hematopoietic transcription factorand erythroid hematopoietic transcription factorin zebrafish.RT-PCR showed that the expressions ofanddecreased in the experimental group compared with the control group (all<0.05). Whole embryohybridization showed that the blue-black positive hybridization signals ofandin experimental group were shallow than those in the control group.Myeloid hematopoietic and erythroid hematopoietic of zebrafish are blocked with the downregulation ofgene.
Animals
;
Down-Regulation
;
genetics
;
Embryo, Nonmammalian
;
physiopathology
;
GATA1 Transcription Factor
;
genetics
;
metabolism
;
Gene Knockdown Techniques
;
Hematopoiesis
;
In Situ Hybridization
;
Lamin Type A
;
genetics
;
physiology
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
Trans-Activators
;
genetics
;
metabolism
;
Zebrafish
;
embryology
;
genetics
4.Effects of Exogenous Carbon Monoxide Releasing Molecules on the Development of Zebrafish Embryos and Larvae.
Jing E SONG ; Jing SI ; ; Rong ZHOU ; ; Hua Peng LIU ; Zhen Guo WANG ; Lu GAN ; ; Fang GUI ; Bin LIU ; Hong ZHANG ;
Biomedical and Environmental Sciences 2016;29(6):453-456
The use of exogenous carbon monoxide releasing molecules (CORMs) provides promise for clinical application; however, the hazard potential of CORMs in vivo remains poorly understood. The developmental toxicity of CORM-3 was investigated by exposure to concentrations ranging from 6.25 to 400 μmol/L during 4-144 h post fertilization. Toxicity endpoints of mortality, spontaneous movement, heart rate, hatching rate, malformation, body length, and larval behavior were measured. CORM-3 disrupted the progression of zebrafish larval development at concentrations exceeding 50 μmol/L, resulting in embryonic developmental toxicity.
Animals
;
Carbon Monoxide
;
pharmacology
;
Cardiotonic Agents
;
toxicity
;
Dose-Response Relationship, Drug
;
Embryo, Nonmammalian
;
drug effects
;
Embryonic Development
;
drug effects
;
Organometallic Compounds
;
toxicity
;
Zebrafish
;
embryology
;
metabolism
5.In vitro development of canine somatic cell nuclear transfer embryos in different culture media.
Dong Hoon KIM ; Jin Gu NO ; Mi Kyung CHOI ; Dong Hyeon YEOM ; Dong Kyo KIM ; Byoung Chul YANG ; Jae Gyu YOO ; Min Kyu KIM ; Hong Tea KIM
Journal of Veterinary Science 2015;16(2):233-235
The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%) or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.
Animals
;
Blastocyst/cytology
;
Cloning, Organism/*veterinary
;
Culture Media/metabolism
;
Dogs/*embryology
;
Embryo Culture Techniques/*veterinary
;
*Embryonic Development
;
Nuclear Transfer Techniques/*veterinary
6.Immunohistochemical evaluation of the goat forestomach during prenatal development.
Angela GARCIA ; Javier MASOT ; Antonio FRANCO ; Antonio GAZQUEZ ; Eloy REDONDO
Journal of Veterinary Science 2014;15(1):35-43
Here we report the detection and distribution of synaptophysin (SPY), non-neuronal enolase (NNE), glial fibrillary acidic protein (GFAP), vimentin (VIM), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP) expression in the goat forestomach during prenatal development. A total of 140 embryos and fetuses were examined to evaluate protein expression from the first stage of prenatal life until birth. In all cases, SPY immunoreactivity was detected at 53 days gestation in the lamina propria-submucosa, tunica muscularis, serosa, and myenteric plexuses. Immunoreactivity to NNE was observed at 64 days gestation in the same locations as well as the epithelial layer. Glial cells were found at 64 days as indicated by signals corresponding to GFAP and VIM at 39 days. Positive staining for NPY and VIP was observed at 113, 75, and 95 days in the rumen, reticulum, and omasum, respectively, in the lamina propria-submucosa, tunica muscularis, and myenteric plexuses of each of these gastric compartments. These findings indicate possible preparation of the fetal goat forestomach for postnatal function. Compared to other ruminant species, neuroendocrine cells, glial cells and peptidergic innervations markers were detected earlier compared to sheep but at around the same stage as in deer.
Animals
;
Biological Markers/metabolism
;
Embryo, Mammalian
;
Endocrine Cells/*metabolism
;
Fetus/metabolism
;
Gene Expression Regulation, Developmental
;
Goats/*embryology/genetics
;
Immunohistochemistry
;
Neuroendocrine Cells/*metabolism
;
Neuroglia/*metabolism
;
Proteins/genetics
;
Rumen/*embryology/metabolism
7.Bivalent histone modifications during tooth development.
Li-Wei ZHENG ; Bin-Peng ZHANG ; Ruo-Shi XU ; Xin XU ; Ling YE ; Xue-Dong ZHOU
International Journal of Oral Science 2014;6(4):205-211
Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. To explore the spatiotemporal expression of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) epigenetic marks and methylation or demethylation transferases in tooth organ development, we measured the expression of SET7, EZH2, KDM5B and JMJD3 via immunohistochemistry and quantitative polymerase chain reaction (qPCR) analysis in the first molar of BALB/c mice embryos at E13.5, E15.5, E17.5, P0 and P3, respectively. We also measured the expression of H3K4me3 and H3K27me3 with immunofluorescence staining. During murine tooth germ development, methylation or demethylation transferases were expressed in a spatial-temporal manner. The bivalent modification characterized by H3K4me3 and H3K27me3 can be found during the tooth germ development, as shown by immunofluorescence. The expression of SET7, EZH2 as methylation transferases and KDM5B and JMJD3 as demethylation transferases indicated accordingly with the expression of H3K4me3 and H3K27me3 respectively to some extent. The bivalent histone may play a critical role in tooth organ development via the regulation of cell differentiation.
Animals
;
Cell Differentiation
;
physiology
;
DNA-Binding Proteins
;
analysis
;
Dental Papilla
;
embryology
;
Embryo, Mammalian
;
Enamel Organ
;
embryology
;
Enhancer of Zeste Homolog 2 Protein
;
Epigenesis, Genetic
;
physiology
;
Gene Expression Regulation, Developmental
;
Histone-Lysine N-Methyltransferase
;
analysis
;
Histones
;
metabolism
;
Jumonji Domain-Containing Histone Demethylases
;
analysis
;
Lysine
;
metabolism
;
Methylation
;
Mice
;
Mice, Inbred BALB C
;
Odontogenesis
;
physiology
;
Polycomb Repressive Complex 2
;
analysis
;
Protein Processing, Post-Translational
;
physiology
;
Tooth Germ
;
embryology
8.Identification of abnormal gene expression in bovine transgenic somatic cell nuclear transfer embryos.
Jongki CHO ; Sungkeun KANG ; Byeong Chun LEE
Journal of Veterinary Science 2014;15(2):225-231
This study was conducted to investigate the expression of three genes related to early embryonic development in bovine transgenic cloned embryos. To accomplish this, development of bovine transgenic somatic cell nuclear transfer (SCNT) embryos was compared with non-transgenic embryos. Next, mRNA transcription of three specific genes (DNMT1, Hsp 70.1, and Mash2) related to early embryo development in transgenic SCNT embryos was compared between transgenic and non-transgenic SCNTs, parthenogenetic embryos, and in vitro fertilization (IVF) embryos. Transgenic SCNT embryos showed significantly lower rates of development to the blastocyst stage than non-transgenic ones. To investigate normal gene expression, RNA was extracted from ten blastocysts derived from parthenogenesis, IVF, non-transgenic, and transgenic SCNT embryos and reverse-transcribed to synthesize cDNA. The cDNA was then subjected to PCR amplification and semi-quantified. More DNMT1 mRNA was detected in the transgenic SCNT group than the other three groups. Hsp 70.1 mRNA was detected in the IVF embryos, while lower levels were found in SCNT and parthenogenetic embryos. Mash2 mRNA was present at the highest levels in transgenic SCNT embryos. In conclusion, the higher levels of methylation and lower protein synthesis after heat shock in the transgenic SCNT embryos expected based on our results may cause lower embryonic development.
Animals
;
Animals, Genetically Modified/genetics
;
Basic Helix-Loop-Helix Transcription Factors/*genetics/metabolism
;
Cattle/embryology/*genetics
;
DNA (Cytosine-5-)-Methyltransferase/*genetics/metabolism
;
Embryo, Mammalian/embryology/metabolism
;
Female
;
Fertilization in Vitro
;
*Gene Expression Regulation, Developmental
;
HSP70 Heat-Shock Proteins/*genetics/metabolism
;
Nuclear Transfer Techniques/veterinary
;
Parthenogenesis
;
Pregnancy
;
RNA, Messenger/genetics/metabolism
;
Transcription, Genetic
9.A simplified one-step nuclear transfer procedure alters the gene expression patterns and developmental potential of cloned porcine embryos.
Sang Kyu PARK ; Sangho ROH ; Jong Im PARK
Journal of Veterinary Science 2014;15(1):73-80
Various somatic cell nuclear transfer (SCNT) techniques for mammalian species have been developed to adjust species-specific procedures to oocyte-associated differences among species. Species-specific SCNT protocols may result in different expression levels of developmentally important genes that may affect embryonic development and pregnancy. In the present study, porcine oocytes were treated with demecolcine that facilitated enucleation with protruding genetic material. Enucleation and donor cell injection were performed either simultaneously with a single pipette (simplified one-step SCNT; SONT) or separately with different pipettes (conventional two-step SCNT; CTNT) as the control procedure. After blastocysts from both groups were cultured in vitro, the expression levels of developmentally important genes (OCT4, NANOG, EOMES, CDX2, GLUT-1, PolyA, and HSP70) were analyzed by real-time quantitative polymerase chain reaction. Both the developmental rate according to blastocyst stage as well as the expression levels CDX2, EOMES, and HSP70 were elevated with SONT compared to CTNT. The genes with elevated expression are known to influence trophectoderm formation and heat stress-induced arrest. These results showed that our SONT technique improved the development of SCNT porcine embryos, and increased the expression of genes that are important for placental formation and stress-induced arrest.
Animals
;
Biological Markers/metabolism
;
Cloning, Organism
;
Embryo, Mammalian/metabolism
;
Female
;
*Gene Expression Regulation, Developmental
;
Nuclear Transfer Techniques/instrumentation/*veterinary
;
Oocytes/metabolism
;
Pregnancy
;
Real-Time Polymerase Chain Reaction
;
Swine/*embryology/*genetics
10.Molecules and mechanisms controlling the active DNA demethylation of the mammalian zygotic genome.
Jun-Yu MA ; Teng ZHANG ; Wei SHEN ; Heide SCHATTEN ; Qing Yuan SUN
Protein & Cell 2014;5(11):827-836
The active DNA demethylation in early embryos is essential for subsequent development. Although the zygotic genome is globally demethylated, the DNA methylation of imprinted regions, part of repeat sequences and some gamete-specific regions are maintained. Recent evidence has shown that multiple proteins and biological pathways participate in the regulation of active DNA demethylation, such as TET proteins, DNA repair pathways and DNA methyltransferases. Here we review the recent understanding regarding proteins associated with active DNA demethylation and the regulatory networks controlling the active DNA demethylation in early embryos.
Animals
;
DNA Methylation
;
Embryo, Mammalian
;
cytology
;
embryology
;
metabolism
;
Gene Expression Regulation, Developmental
;
Gene Regulatory Networks
;
genetics
;
Genome
;
genetics
;
Humans
;
Mice
;
Models, Genetic
;
Zygote
;
cytology
;
growth & development
;
metabolism

Result Analysis
Print
Save
E-mail