1.Optimization of the in vitro culture system for chicken small intestinal organoids.
Jing LI ; Liya WANG ; Dingyun MA ; Senyang LI ; Juanfeng LI ; Qingda MENG ; Junqiang LI ; Fuchun JIAN
Chinese Journal of Biotechnology 2024;40(12):4645-4659
In order to establish a stable in vitro culture platform for chicken small intestine three-dimensional (3D) organoids, in this study, crypt cells were collected from the small intestine of 18-day-old embryos of AA broilers. On the basis of the L-WRN conditioned medium, we optimized the culture conditions of chicken small intestinal organoids by adjusting the proportions of nicotinamide, N-acetylcysteine, LY2157299, CHIR99021, Jagged-1, FGF, and other cytokines to select the medium suitable for the long-term stable growth of the organoids. The optimization results showed that the addition of 1.5 µmol/L CHIR99021 significantly improved the organoid formation efficiency and organoid diameter. When 0.5 µmol/L Jagged-1 was added, a small amount of bud-like tissue appeared in organoids. After the addition of 50 ng/mL FGF-2, the rate of organoid germination was significantly increased. The 1.5 µmol/L CHIR99021, 0.5 µmol/L Jagged-1, and 50 ng/mL FGF-2 added in the medium can cooperate with each other to improve the formation and speed up the proliferation and differentiation of organoids, while improving the stemness maintenance of cells. The morphology, cell types, and culture characteristics of chicken small intestinal organoids were studied by HE staining, transmission electron microscopy, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), indirect immunofluorescence, and immunohistochemistry. The results showed that the 3D organoids of the chicken small intestine cultured in vitro were morphologically consistent with the chicken intestinal tissue and contained differentiated epithelial cells. In summary, we successfully established an in vitro culture system for chicken small intestinal organoids, providing a new method for the subsequent research on chicken intestinal physiology, pathology, and host-pathogen interaction mechanism and the development of relevant drugs.
Animals
;
Organoids/metabolism*
;
Intestine, Small/drug effects*
;
Chickens
;
Cell Culture Techniques/methods*
;
Culture Media
;
Chick Embryo
;
Tissue Culture Techniques/methods*
2.Developmental effects of TCIPP and TnBP on zebrafish (Danio rerio) embryos.
Shu Yi ZHANG ; Shao Ping ZHANG ; Zi Jin SHAO ; Yuan Zheng FU ; Wen GU ; Hong ZHI ; Jian KONG ; Fu Chang DENG ; Wen Yan YAN ; Juan LIU ; Chao WANG ; Song TANG
Chinese Journal of Preventive Medicine 2023;57(5):693-700
Objective: To investigate the toxicity of tris (2-chloropropyl) phosphate (TCIPP) and tributyl phosphate (TnBP) on the growth and development of zebrafish embryos, as well as to explore the underlying mechanisms at the transcriptional level. Methods: With zebrafish as a model, two hpf zebrafish embryos were exposed to TCIPP and TnBP (0.1, 1, 10, 100, 500, and 1 000 μmol/L) using the semi-static method, and their rates of lethality and hatchability were determined. The transcriptome changes of 120 hpf juvenile zebrafish exposed to environmentally relevant concentrations of 0.1 and 1 μmol/L were measured. Results: The 50% lethal concentrations (LC50) of TCIPP and TnBP for zebrafish embryos were 155.30 and 27.62 μmol/L (96 hpf), 156.5 and 26.05 μmol/L (120 hpf), respectively. The 72 hpf hatching rates of TCIPP (100 μmol/L) and TnBP (10 μmol/L) were (23.33±7.72)% and (91.67±2.97)%, which were significantly decreased compared with the control group (P<0.05). Transcriptome analysis showed that TnBP had more differential genes (DEGs) than TCIPP, with a dose-response relationship. These DEGs were enriched in 32 pathways in total, including those involved in oxidative stress, energy metabolism, lipid metabolism, and nuclear receptor-related pathways, using the IPA pathway analysis. Among them, three enriched pathways overlapped between TCIPP and TnBP, including TR/RXR activation and CAR/RXR activation. Additionally, DEGs were also mapped onto pathways of LXR/RXR activation and oxidative stress for TnBP exposure only. Conclusion: Both TCIPP and TnBP have growth and developmental toxicities in zebrafish embryos, with distinct biomolecular mechanisms, and TnBP has a stronger effect than TCIPP.
Animals
;
Zebrafish/metabolism*
;
Embryo, Nonmammalian/metabolism*
;
Transcriptome
;
Oxidative Stress
;
Water Pollutants, Chemical/metabolism*
3.A case of a 45,X,46,X+mar male phenotype mosaic Turner syndrome with a mixed gonadal germ cell tumor
Regrine Bolando Lagarteja ; Brenda Bernadette Bautista-Zamora ; Christian A. Canoy
Philippine Journal of Obstetrics and Gynecology 2023;47(2):81-87
Turner syndrome is a congenital condition affecting 1 in every 2500 female live births. This condition is characterized by complete or partial loss of the X chromosome. They commonly present with normal female external and internal genitalia and may develop hypogonadism and streak ovaries later in life. We describe an unusual presentation of a case of Turner syndrome – a 31-year-old Filipino with male phenotype mosaic Turner syndrome, with 46,X,+mar[46]/45,X[4] chromosome, presenting with ambiguous genitalia and a pelvoabdominal mass. The patient underwent exploratory laparotomy, peritoneal fluid cytology, adhesiolysis, tumor debulking (gonadectomy) appendectomy, omentectomy, identification and inspection of bilateral ureters and bladder, gonioscopy and biopsy of the urogenital cavity (bladder vs. vagina). Histopathology revealed a mixed gonadal tumor, consisting of 70% yolk sac tumor, and 30% dysgerminoma. The patient eventually succumbed to postoperative complications. Postmortem fluorescence-in situ hybridization revealed a 46,X,+mar[46]/45,X,[4].ish der (Y) (DYZ3+), a marker of chromosome Y origin, consistent with a mosaic type Turner syndrome, associated with increased risk for gonadal malignancy.
Dysgerminoma
;
mixed germ cell tumor
;
mosaicism
;
yolk sac tumor
4.Effects of Toluene on the Development of the Inner Ear and Lateral Line Sensory System of Zebrafish.
Xu Dong LI ; Hong Wei TU ; Ke Qi HU ; Yun Gang LIU ; Li Na MAO ; Feng Yan WANG ; Hong Ying QU ; Qing CHEN
Biomedical and Environmental Sciences 2021;34(2):110-118
Objective:
The aim of this study was to explore the ototoxicity of toluene in the early development of zebrafish embryos/larvae.
Methods:
Zebrafish were utilized to explore the ototoxicity of toluene. Locomotion analysis, immunofluorescence, and qPCR were used to understand the phenotypes and molecular mechanisms of toluene ototoxicity.
Results:
The results demonstrated that at 2 mmol/L, toluene induced zebrafish larvae death at 120 hours post fertilization (hpf) at a rate of 25.79% and inhibited the rate of hatching at 72 hpf. Furthermore, toluene exposure inhibited the distance travelled and average swimming velocity of zebrafish larvae while increasing the frequency of movements. As shown by fluorescence staining of hair cells, toluene inhibited the formation of lateral line neuromasts and middle line 1 (Ml
Conclusion
This study indicated that toluene may affect the development of both the inner ear and lateral line systems in zebrafish, while the lateral line system may be more sensitive to toluene than the inner ear.
Animals
;
Ear, Inner/growth & development*
;
Embryo, Nonmammalian/drug effects*
;
Gene Expression Regulation, Developmental/drug effects*
;
Hair Cells, Auditory/metabolism*
;
Lateral Line System/growth & development*
;
Locomotion/drug effects*
;
Ototoxicity/physiopathology*
;
Toluene/toxicity*
;
Zebrafish
5.A rapid and accurate method for herpesviral gnome editing.
Aijun SUN ; Xiangru WANG ; Shuaikang YANG ; Ying LIU ; Gaiping ZHANG ; Guoqing ZHUANG
Chinese Journal of Biotechnology 2021;37(4):1376-1384
To rapidly and accurately manipulate genome such as gene deletion, insertion and site mutation, the whole genome of a very virulent strain Md5 of Marek's disease virus (MDV) was inserted into bacterial artificial chromosome (BAC) through homogeneous recombination. The recombinant DNA was electroporated into DH10B competent cells and identified by PCR and restriction fragment length polymorphism analysis. An infectious clone of Md5BAC was obtained following transfection into chicken embryo fibroblast (CEF) cells. Furthermore, a lorf10 deletion mutant was constructed by two step Red-mediated homologous recombination. To confirm the specific role of gene deletion, the lorf10 was reinserted into the original site of MDV genome to make a revertant strain. All the constructs were rescued by transfection into CEF cells, respectively. The successful packaging of recombinant viruses was confirmed by indirect immunofluorescence assay. The results of growth kinetics assay and plaques area measurement showed that the lorf10 is dispensable for MDV propagation in vitro. Overall, this study successfully constructed an infectious BAC clone of MDV and demonstrated its application in genome manipulation; the knowledge gained from our study could be further applied to other hepesviruses.
Animals
;
Chick Embryo
;
Chickens
;
Chromosomes, Artificial, Bacterial
;
DNA, Recombinant
;
Herpesvirus 2, Gallid/genetics*
;
Marek Disease
6.Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators.
Bingzhou HAN ; Yage ZHANG ; Xuetong BI ; Yang ZHOU ; Christopher J KRUEGER ; Xinli HU ; Zuoyan ZHU ; Xiangjun TONG ; Bo ZHANG
Protein & Cell 2021;12(1):39-56
Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function. However, contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported. Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system. We demonstrated the feasibility of this strategy at sox10 and isl1 loci, and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter, allowing generation of genetic mosaics for lineage tracing. We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles, both tagged with two different fluorescent reporters. By introducing Cre recombinase, these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel; furthermore, differential fluorescent labeling of the positive and negative alleles enables simple, early and efficient real-time discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes. We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus. Furthermore, we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology. Our system could easily be expanded for other applications or to other organisms, and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.
Alleles
;
Animals
;
CRISPR-Cas Systems
;
DNA End-Joining Repair
;
DNA, Circular/metabolism*
;
Embryo, Nonmammalian
;
Gene Editing/methods*
;
Gene Knock-In Techniques
;
Gene Knockout Techniques
;
Genes, Reporter
;
Genetic Loci
;
Genotyping Techniques
;
Green Fluorescent Proteins/metabolism*
;
Integrases/metabolism*
;
Luminescent Proteins/metabolism*
;
Mutagenesis, Insertional
;
Single-Cell Analysis
;
Zebrafish/metabolism*
7.Regulation of RNA Binding Protein Mbnl1 on Development of Mouse Embryonic Hematopoietic Stem Cells.
Ya-Fei XU ; Wan-Bo TANG ; Jie ZHOU ; Bing LIU ; Yu LAN
Journal of Experimental Hematology 2021;29(3):924-930
OBJECTIVE:
To analyze the dynamic molecular expression characteristics of single cell RNA binding proteins (RBPs) in the development of mouse embryonic hematopoitic stem cells (HSCs), and obtain the functional research target RNA splicing factor--Mbnl1, to clarify the function of Mbnl1 involved in regulating mouse embryonic HSC development.
METHODS:
Bioinformatics was used to analyze the single-cell transcriptome data of mouse embryos during HSC development, and the single-cell RBP dynamic molecular expression maps in HSC development was obtained. Mbnl1 was obtained by combining differential analysis and literature research screening. The Mbnl1-knockout mouse model was constructed by the CRISPER/Cas9 technology. Aorta-gonad-mesonephros (AGM) and yolk sac (YS) tissue in two genotype embryos of Mbnl1
RESULTS:
The in vitro CFU-C experiment of hematopoietic cells preliminarily indicated that there was no significant difference in the number of cell colonies in AGM region and YS transformed by the two genotypes of Mbnl1
CONCLUSION
Through functional experiments in vivo and in vitro, it has been confirmed that knockout of the RNA splicing factor--Mbnl1 does not affect the development of HSPC in AGM region of mouse embryo.
Animals
;
DNA-Binding Proteins
;
Gonads
;
Hematopoiesis
;
Hematopoietic Stem Cells
;
Mesonephros
;
Mice
;
RNA-Binding Proteins/genetics*
;
Yolk Sac
9.Conservative Surgery for a young nulligravid with ovarian yolk sac tumor and concurrent contralateral mature teratoma.
Girlie E GANDOLFOS ; Ina S IRABON
Philippine Journal of Reproductive Endocrinology and Infertility 2019;16(2):29-52
Ovarian cancer is the second most common gynecologic cancer worldwide and the six most common cancer among females. Germ cell tumorbs are the most common ovarian neoplasm in the first two decades of life constituting approximately two-thirds of all ovarian tumors. Malignant germ cell tumors constitute one-third of germ cell origin tutors and two-thirds of all ovarian malignancy in this age-group. This paper presents a case of a 19 year-old nulligravid who presented at the emergency room with abdominal pain, and was intraoperatively diagnosed with yolk sac tutor of the right ovary, stage 1A mature cystic teratoma of the left ovary. She subsequently underwent unilateral salpingooophorectomy and contralateral oophorocystectomy, left. Patient is advised chemotherapy postoperatively, with Bleomycin, Etoposide and Paclitaxel. This paper discusses the incidence, risk factors, prognosis and management of yolk of sac tutor in a young nulligravid.
Human ; Female ; Adult (a Person 19-44 Years Of Age) ; Yolk Sac Tumor
10.Study on Flk1 Cells during Mouse Early Embryogenesis by Lineage Tracing.
Bai-Han WANG ; Si-Yuan HOU ; Zhi-Lin CHANG ; Yu LAN ; Bing LIU
Journal of Experimental Hematology 2019;27(3):942-949
OBJECTIVE:
To understand the differentiation of mesoderm-derived Flk1 cells on different locations of the early mouse embryonic development and to explore the potential of Flk1 cells to differentiate into mesenchymal lineage, like pericytes during vascular development.
METHODS:
Based on the Cre-LoxP system conditional knockout study strategy, the Flk1-Cre mice and ROSA26 reporter mice were used for lineage-tracing studies. The fate of the Flk1 progenitor cells was traced with the GFP population. The detection of mesoderm marker Flk1, hematopoietic cell-specific marker CD45, endothelial cell-specific markers CD31, CD144, and Emcn (endomucin), pericyte specific markers PDGFRβ and NG2, using the methods of immunohistochemistry, immunofluorescence, and flow cytometry should be combined to solve the concerned problems.
RESULTS:
Immunohistochemical staining of different fractions of E8.5-10.5 in the early embryogenesis of Flk1-Cre; ROSA26-EYFP mouse lineage showed that there were multiple populations in the Flk1 cell-derived GFP population surrounding hematopoietic sites, such as dorsal aortas, limb buds and yolk sac. In addition to hematopoietic cells, the CD31/Emcn typical endothelial cells distributed specifically along the blood vessel wall, there were many types of cell populations, such as mesenchymal-like cells. The immunofluorescence demonstrated that the cells of this group are neither hematopoietic, non-endothelial cells around the blood vessels, which are NG2+ pericytes. FACS analysis also confirmed that Flk1 cells contributed to pericytes. In addition, in different hematopoietic sites of the embryo, a small population of CD31+CD140B+ cell populations with a mesenchymal-like morphology was observed in the GFP population.
CONCLUSION
In the early stages of embryogenesis, mesoderm-derived Flk1 populations not only contribute to hematopoietic, endothelial, and muscle lineages, but also have a differentiation potential for mesenchymal lineage, like pericytes. The presumably observed CD31CD140B cell population may be a group of endothelial cells differentiated from Flk1 progenitor cells and undergoing an endothelium-to-mesenchymal transition, EndMT, gradually losing the endothelial surface-specific marker and also starting to express a pericyte surface-specific marker.
Animals
;
Cell Differentiation
;
Cell Lineage
;
Mesoderm
;
Mice
;
Stem Cells
;
Vascular Endothelial Growth Factor Receptor-2
;
Yolk Sac


Result Analysis
Print
Save
E-mail