1.Coronary artery stenosis associated with right ventricular dysfunction in acute pulmonary embolism: A case-control study.
Yuejiao MA ; Jieling MA ; Dan LU ; Yinjian YANG ; Chao LIU ; Liting WANG ; Xijie ZHU ; Xianmei LI ; Chunyan CHENG ; Sijin ZHANG ; Jiayong QIU ; Jinghui LI ; Mengyi LIU ; Kai SUN ; Xin JIANG ; Xiqi XU ; Zhi-Cheng JING
Chinese Medical Journal 2025;138(16):2028-2036
BACKGROUND:
The potential impact of pre-existing coronary artery stenosis (CAS) on right ventricular (RV) function during acute pulmonary embolism (PE) episodes remains underexplored. This study aimed to investigate the association between pre-existing CAS and RV dysfunction in patients with acute PE.
METHODS:
In this multicenter, case-control study, 89 cases and 176 controls matched for age were enrolled at three study centers (Peking Union Medical College Hospital, Fuwai Hospital, and the Second Affiliated Hospital of Harbin Medical University) from January 2016 to December 2020. The cases were patients with acute PE with CAS, and the controls were patients with acute PE without CAS. Coronary artery assessment was performed using coronary computed tomographic angiography. CAS was defined as ≥50% stenosis of the lumen diameter in any coronary vessel >2.0 mm in diameter. Conditional logistic regression analysis was used to evaluate the association between CAS and RV dysfunction.
RESULTS:
The percentages of RV dysfunction (19.1% [17/89] vs. 44.6% [78/176], P <0.001) and elevated systolic pulmonary artery pressure (sPAP) (19.3% [17/89] vs. 39.5% [68/176], P = 0.001) were significantly lower in the case group than those in the control group. In the multivariable logistic regression model, CAS was independently and negatively associated with RV dysfunction (adjusted odds ratio [OR]: 0.367; 95% confidence interval [CI]: 0.185-0.728; P = 0.004), and elevated sPAP (OR: 0.490; 95% CI: 0.252-0.980; P = 0.035), respectively.
CONCLUSIONS
Pre-existing CAS was significantly and negatively associated with RV dysfunction and elevated sPAP in patients with acute PE. This finding provides new insights into RV dysfunction in patients with acute PE with pre-existing CAS.
Humans
;
Pulmonary Embolism/complications*
;
Case-Control Studies
;
Male
;
Ventricular Dysfunction, Right/physiopathology*
;
Female
;
Middle Aged
;
Aged
;
Coronary Stenosis/complications*
;
Logistic Models
;
Adult
2.Application of electrical impedance tomography in diagnosis and monitoring of pulmonary diseases.
Xiaomin HU ; Shuaifu ZHANG ; Panfeng CHEN ; Feng DONG ; Haojun FAN ; Qi LYU ; Yanbin XU
Journal of Biomedical Engineering 2025;42(2):389-395
Electrical impedance tomography (EIT) is a new non-invasive functional imaging technology, which has the advantages of non-invasion, non-radiation, low cost, fast response, portability and visualization. In recent years, more and more studies have shown that EIT has great potential in the detection of lung diseases and has been applied to early diagnosis and treatment of some diseases. This paper introduced the basic principle of EIT, discussed the research and clinical application of EIT in the detection of acute respiratory distress syndrome, chronic obstructive pulmonary disease, pneumothorax and pulmonary embolism, and focused on the summary and introduction of indicators and functional images of EIT related to the detection of lung diseases. This review will help medical workers understand and use EIT, and promote the further development of EIT in lung diseases as well as other fields.
Humans
;
Electric Impedance
;
Tomography/methods*
;
Lung Diseases/diagnosis*
;
Pulmonary Disease, Chronic Obstructive/diagnosis*
;
Pulmonary Embolism/diagnosis*
;
Respiratory Distress Syndrome/diagnosis*
3.Experience of the use of cerebral embolic protection device during transcatheter aortic valve replacement.
Lan ZHANG ; Xinmin LIU ; Ziwei XI ; Fei YUAN ; Jing YAO ; Zhengming JIANG ; Yunfeng YAN ; Guangyuan SONG
Journal of Zhejiang University. Medical sciences 2025;54(4):541-548
OBJECTIVES:
To evaluate the feasibility, efficacy and safety of Sentinel cerebral embolic protection device (CEPD) during transcatheter aortic valve replacement (TAVR). This study is a subgroup analysis of the China Moderate to Severe Valvular Heart Disease Registry, which has been registered at the Chinese Clinical Trial Registry (ChiCTR2300075006).
METHODS:
Patients undergoing TAVR with the Sentinel CEPD from October 2023 to September 2024 were retrospectively enrolled. A total of 80 patients were included, with a median age of 72 (68, 76) years, including 52 males (65.0%) and 28 females (35.0%); 62 patients (77.5%) with tricuspid valves, and 18 patients (22.5%) with bicuspid valves; 34 patients (42.5%) with type Ⅰ aortic arch, 24 patients (30.0%) with type Ⅱ aortic arch, 12 patients (15.0%) with type Ⅲ aortic arch, and 10 patients (12.5%) with bovine-type aortic arch. Clinical data of the patients were summarized and analyzed. The primary endpoints were success rate of Sentinel CEPD implantation, as well as all-cause death, symptomatic stroke, transient ischemic attack, and Sentinel CEPD access vessel complications during hospitalization and within 30 days postoperatively.
RESULTS:
In the 80 patients, self-expanding valves were used in 68 cases (85.0%) and balloon-expandable valves in 12 cases (15.0%). Seventy-nine patients (98.8%) successfully underwent TAVR with Sentinel CEPD deployment. Macroscopically visible debris was captured in 92.5% (74/80) by filters of Sentinel CEPD. Although the procedure time for Sentinel CEPD placement was slightly longer in patients with bovine-type aortic arch, there was no statistically significant difference in deployment time among different aortic arch types (P>0.05). During hospitalization and within 30 days postoperatively, only one case of transient ischemic attack occurred, and there was no all-cause mortality, symptomatic stroke, or access-site vascular complications related to the Sentinel CEPD observed.
CONCLUSIONS
The Sentinel CEPD demonstrates high feasibility across aortic arch types, potential efficacy in embolic capture, and excellent safety in TAVR.
Humans
;
Transcatheter Aortic Valve Replacement/adverse effects*
;
Male
;
Female
;
Aged
;
Embolic Protection Devices
;
Retrospective Studies
;
Intracranial Embolism/prevention & control*
;
Aged, 80 and over
;
Aortic Valve Stenosis/surgery*
;
Aortic Valve/surgery*
4.Development and validation of a nomogram prediction model for in-hospital mortality risk in patients with sepsis complicated with acute pulmonary embolism.
Li HUANG ; Zhengbin WANG ; Yan ZHANG ; Xiao YUE ; Shuo WANG ; Yanxia GAO
Chinese Critical Care Medicine 2025;37(2):123-127
OBJECTIVE:
To explore the risk factors affecting the prognosis of patients with sepsis complicated with acute pulmonary embolism, and to construct and validate a nomogram predictive model for in-hospital mortality risk.
METHODS:
Based on the American Medical Information Mart for Intensive Care (MIMIC-III, MIMIC-IV) databases, the data were collected on patients with sepsis complicated with acute pulmonary embolism from 2001 to 2019, including baseline characteristics, and vital signs, disease scores, laboratory tests within 24 hours of admission to the intensive care unit (ICU), and interventions. In-hospital mortality was the outcome event. The total samples were divided into training and testing sets in a 7:3 ratio by random sampling. Univariate Cox regression analysis was used to verify the impact of all variables on the risk of in-hospital mortality, thereby screen potential influencing factors. Subsequently, a stepwise bi-directional regression method was applied to select factors one by one, leading to the construction of a nomogram prediction model. Collinearity testing was used to demonstrate the absence of strong multicollinearity among the influencing factors in the nomogram prediction model. The discrimination of the nomogram model, sequential organ failure assessment (SOFA), and simplified pulmonary embolism severity index (sPESI) was evaluated using C-index in the test set. Receiver operator characteristic curve (ROC curve) was drawn to evaluate the predictive value of various models for in-hospital mortality in patients with sepsis complicated with acute pulmonary embolism.
RESULTS:
A total of 562 patients with sepsis complicated with acute pulmonary embolism were included, including 393 in the training set and 169 in the testing set. Univariate Cox regression analysis showed that 30 factors associated with in-hospital mortality in patients with sepsis complicated with acute pulmonary embolism. Through stepwise bi-directional regression, 12 variables were ultimately selected, including gender, presence of malignant tumors, body temperature, red cell distribution width (RDW), blood urea nitrogen (BUN), serum potassium, prothrombin time (PT), 24-hour urine output, mechanical ventilation, vasoactive drugs, warfarin use, and sepsis-induced coagulopathy (SIC). Collinearity testing indicated no strong multicollinearity among the influencing factors [all variance inflation factor (VIF) > 10]. A nomogram model was constructed using the 12 variables mentioned above. The nomogram model predicted the C-index and its 95% confidence interval (95%CI) of in-hospital mortality in patients with sepsis complicated with acute pulmonary embolism better than SOFA score and sPESI [0.771 (0.725-0.816) vs. 0.579 (0.519-0.639), 0.608 (0.554-0.663)]. The ROC curve showed that the area under the curve (AUC) and its 95%CI of the nomogram model were higher than those of the SOFA score and sPESI [0.811 (0.766-0.857) vs. 0.630 (0.568-0.691), 0.623 (0.566-0.680)]. These findings were consistently replicated in the internal validation of the testing set. In both the training and testing sets, Delong's test showed that the AUC of the nomogram model was significantly higher than the SOFA score and sPESI (both P < 0.05).
CONCLUSION
The nomogram model demonstrated good predictive effectiveness for the risk of in-hospital mortality in patients with sepsis complicated with acute pulmonary embolism, enabling clinicians to predict mortality risk in advance and take timely interventions to reduce mortality.
Humans
;
Pulmonary Embolism/mortality*
;
Hospital Mortality
;
Nomograms
;
Sepsis/complications*
;
Prognosis
;
Risk Factors
;
Intensive Care Units
;
Male
;
Female
;
Middle Aged
;
Aged
5.CT observation of the occlusion site and recent prognosis characteristics of endovascular treatment in patients with different acute vertebrobasilar artery occlusion
Yan ZHANG ; Xianghui XU ; Dong LI
Journal of Apoplexy and Nervous Diseases 2024;41(3):276-279
Objective Exploring CT observation of the occlusion site and recent prognosis characteristics of endovascular treatment in patients with acute vertebrobasilar artery occlusion.Methods A total of 140 patients with acute vertebrobasilar artery occlusion treated in our hospital from January 2019 to May 2022 were selected. According to the pathological mechanism, there were 98 cases of atherosclerosis (group A) and 42 cases of embolism (group B). The clinical data, occlusion site, and prognosis of the two groups were compared using the t-test or χ2 test, and the differences in the clinical data of patients with different outcomes were analyzed. Receiver operating characteristic (ROC) curves were used to determine the value of the National Institutes of Health Stroke Scale (NIHSS) score and the Basilar Artery on Computed Tomography Angiography (BATMAN) score for predicting poor prognosis.Results There were no significant differences between group A and group B in sex, age, the body mass index, hypertension,diabetes,history of stroke, time from onset to admission,NIHSS score, and BATMAN score (P>0.05). The occlusion rates of the vertebral artery V4 segment and the middle basilar artery in group A were 41.84% and 33.67% respectively, which were significantly higher than those in group B (P<0.05). The proportion of upper basilar artery occlusion in group B was 59.52%, which was significantly higher than that in group A (P<0.05). The ischemic penumbra volume and infarct core volume in group A were (46.64±15.44) ml and (20.10±9.92)ml, respectively, which were significantly lower than those in group B(P<0.05). Patients with a poor prognosis had a significantly higher NIHSS score(24.41±2.09) points and a significantly lower BATMAN score (3.61±0.72) points than patients with a good prognosis(P<0.05). For NIHSS score and BATMAN score predicting a poor prognosis,the areas under the ROC curves were 0.893 and 0.902,the cut-off values were 22 and 5,the sensitivity values were 86.60% and 92.70%,and the sensitivity values were 86.20% and 77.60%,respectively.Conclusion Patients with acute vertebrobasilar artery occlusion caused by intracranial atherosclerosis and embolism differ significantly in the occlusion site, but with no significant difference in the prognosis of patients. The NIHSS score and BATMAN score have certain application value in predicting the prognosis of patients with acute vertebrobasilar artery occlusion.
Embolism
;
Prognosis
6.Impact of VA-ECMO combined with IABP and timing on outcome of patients with acute myocardial infarction complicated with cardiogenic shock.
Chen Liang PAN ; Jing ZHAO ; Si Xiong HU ; Peng LEI ; Cun Rui ZHAO ; Yu Run SU ; Wei Ting CAI ; Shan Shan ZHANG ; Zhi Jie YAN ; An Dong LU ; Bo ZHANG ; Ming BAI
Chinese Journal of Cardiology 2023;51(8):851-858
Objective: To investigate the impact of combined use and timing of arterial-venous extracorporeal membrane oxygenation (VA-ECMO) with intra-aortic balloon pump (IABP) on the prognosis of patients with acute myocardial infarction complicated with cardiogenic shock (AMICS). Methods: This was a prospective cohort study, patients with acute myocardial infarction and cardiogenic shock who received VA-ECMO support from the Heart Center of Lanzhou University First Hospital from March 2019 to March 2022 in the registration database of the Chinese Society for Extracorporeal Life Support were enrolled. According to combination with IABP and time point, patients were divided into VA-ECMO alone group, VA-ECMO+IABP concurrent group and VA-ECMO+IABP non-concurrent group. Data from 3 groups of patients were collected, including the demographic characteristics, risk factors, ECG and echocardiographic examination results, critical illness characteristics, coronary intervention results, VA-ECMO related parameters and complications were compared among the three groups. The primary clinical endpoint was all-cause death, and the safety indicators of mechanical circulatory support included a decrease in hemoglobin greater than 50 g/L, gastrointestinal bleeding, bacteremia, lower extremity ischemia, lower extremity thrombosis, acute kidney injury, pulmonary edema and stroke. Kaplan-Meier survival curves were used to analyze the survival outcomes of patients within 30 days of follow-up. Using VA-ECMO+IABP concurrent group as reference, multivariate Cox regression model was used to evaluate the effect of the combination of VA-ECMO+IABP at different time points on the prognosis of AMICS patients within 30 days. Results: The study included 68 AMICS patients who were supported by VA-ECMO, average age was (59.8±10.8) years, there were 12 female patients (17.6%), 19 cases were in VA-ECMO alone group, 34 cases in VA-ECMO+IABP concurrent group and 15 cases in VA-ECMO+IABP non-concurrent group. The success rate of ECMO weaning in the VA-ECMO+IABP concurrent group was significantly higher than that in the VA-ECMO alone group and the VA-ECMO+IABP non-concurrent group (all P<0.05). Compared with the ECMO+IABP non-concurrent group, the other two groups had shorter ECMO support time, lower rates of acute kidney injury complications (all P<0.05), and lower rates of pulmonary edema complications in the ECMO alone group (P<0.05). In-hospital survival rate was significantly higher in the VA-ECMO+IABP concurrent group (28 patients (82.4%)) than in the VA-ECMO alone group (9 patients) and VA-ECMO+IABP non-concurrent group (7 patients) (all P<0.05). The survival rate up to 30 days of follow-up was also significantly higher surviving patients within were in the ECMO+IABP concurrent group (26 cases) than in VA-ECMO alone group (9 patients) and VA-ECMO+IABP non-concurrent group (4 patients) (all P<0.05). Multivariate Cox regression analysis showed that compared with the concurrent use of VA-ECMO+IABP, the use of VA-ECMO alone and non-concurrent use of VA-ECMO+IABP were associated with increased 30-day mortality in AMICS patients (HR=2.801, P=0.036; HR=2.985, P=0.033, respectively). Conclusions: When VA-ECMO is indicated for AMICS patients, combined use with IABP at the same time can improve the ECMO weaning rate, in-hospital survival and survival at 30 days post discharge, and which does not increase additional complications.
Humans
;
Female
;
Middle Aged
;
Aged
;
Shock, Cardiogenic/complications*
;
Extracorporeal Membrane Oxygenation/methods*
;
Pulmonary Edema/complications*
;
Aftercare
;
Prospective Studies
;
Patient Discharge
;
Myocardial Infarction/therapy*
;
Intra-Aortic Balloon Pumping/methods*
;
Treatment Outcome
;
Retrospective Studies
7.Impact of VA-ECMO combined with IABP and timing on outcome of patients with acute myocardial infarction complicated with cardiogenic shock.
Chen Liang PAN ; Jing ZHAO ; Si Xiong HU ; Peng LEI ; Cun Rui ZHAO ; Yu Run SU ; Wei Ting CAI ; Shan Shan ZHANG ; Zhi Jie YAN ; An Dong LU ; Bo ZHANG ; Ming BAI
Chinese Journal of Cardiology 2023;51(8):851-858
Objective: To investigate the impact of combined use and timing of arterial-venous extracorporeal membrane oxygenation (VA-ECMO) with intra-aortic balloon pump (IABP) on the prognosis of patients with acute myocardial infarction complicated with cardiogenic shock (AMICS). Methods: This was a prospective cohort study, patients with acute myocardial infarction and cardiogenic shock who received VA-ECMO support from the Heart Center of Lanzhou University First Hospital from March 2019 to March 2022 in the registration database of the Chinese Society for Extracorporeal Life Support were enrolled. According to combination with IABP and time point, patients were divided into VA-ECMO alone group, VA-ECMO+IABP concurrent group and VA-ECMO+IABP non-concurrent group. Data from 3 groups of patients were collected, including the demographic characteristics, risk factors, ECG and echocardiographic examination results, critical illness characteristics, coronary intervention results, VA-ECMO related parameters and complications were compared among the three groups. The primary clinical endpoint was all-cause death, and the safety indicators of mechanical circulatory support included a decrease in hemoglobin greater than 50 g/L, gastrointestinal bleeding, bacteremia, lower extremity ischemia, lower extremity thrombosis, acute kidney injury, pulmonary edema and stroke. Kaplan-Meier survival curves were used to analyze the survival outcomes of patients within 30 days of follow-up. Using VA-ECMO+IABP concurrent group as reference, multivariate Cox regression model was used to evaluate the effect of the combination of VA-ECMO+IABP at different time points on the prognosis of AMICS patients within 30 days. Results: The study included 68 AMICS patients who were supported by VA-ECMO, average age was (59.8±10.8) years, there were 12 female patients (17.6%), 19 cases were in VA-ECMO alone group, 34 cases in VA-ECMO+IABP concurrent group and 15 cases in VA-ECMO+IABP non-concurrent group. The success rate of ECMO weaning in the VA-ECMO+IABP concurrent group was significantly higher than that in the VA-ECMO alone group and the VA-ECMO+IABP non-concurrent group (all P<0.05). Compared with the ECMO+IABP non-concurrent group, the other two groups had shorter ECMO support time, lower rates of acute kidney injury complications (all P<0.05), and lower rates of pulmonary edema complications in the ECMO alone group (P<0.05). In-hospital survival rate was significantly higher in the VA-ECMO+IABP concurrent group (28 patients (82.4%)) than in the VA-ECMO alone group (9 patients) and VA-ECMO+IABP non-concurrent group (7 patients) (all P<0.05). The survival rate up to 30 days of follow-up was also significantly higher surviving patients within were in the ECMO+IABP concurrent group (26 cases) than in VA-ECMO alone group (9 patients) and VA-ECMO+IABP non-concurrent group (4 patients) (all P<0.05). Multivariate Cox regression analysis showed that compared with the concurrent use of VA-ECMO+IABP, the use of VA-ECMO alone and non-concurrent use of VA-ECMO+IABP were associated with increased 30-day mortality in AMICS patients (HR=2.801, P=0.036; HR=2.985, P=0.033, respectively). Conclusions: When VA-ECMO is indicated for AMICS patients, combined use with IABP at the same time can improve the ECMO weaning rate, in-hospital survival and survival at 30 days post discharge, and which does not increase additional complications.
Humans
;
Female
;
Middle Aged
;
Aged
;
Shock, Cardiogenic/complications*
;
Extracorporeal Membrane Oxygenation/methods*
;
Pulmonary Edema/complications*
;
Aftercare
;
Prospective Studies
;
Patient Discharge
;
Myocardial Infarction/therapy*
;
Intra-Aortic Balloon Pumping/methods*
;
Treatment Outcome
;
Retrospective Studies
10.Learning curve and analysis of curative effects after balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension.
Cheng HONG ; Linna HU ; Haimin LIU ; Xiaofeng WU ; Jianmin LU ; Jiangpeng LIN ; Wenliang GUO ; Xishi SUN ; Jielong LIN ; Riken CHEN ; Zhenzhen ZHENG
Chinese Medical Journal 2023;136(1):99-101

Result Analysis
Print
Save
E-mail