1.Post-resuscitation care of patients with return of spontaneous circulation after out-of-hospital cardiac arrest at the emergency department.
Jing Kai Jackie LAM ; Jen Heng PEK
Singapore medical journal 2025;66(2):66-72
INTRODUCTION:
Out-of-hospital-cardiac-arrest (OHCA) is a major public health challenge and post-return-of-spontaneous-circulation (ROSC) goals have shifted from just survival to survival with intact neurology. Although post-ROSC care is crucial for survival with intact neurology, there are insufficient well-established protocols for post-resuscitation care. We aimed to evaluate post-resuscitation care in the emergency department (ED) of adult (aged ≥16 years) OHCA patients with sustained ROSC and its associated neurologically intact survival.
METHODS:
A retrospective review of electronic medical records was conducted for OHCA patients with sustained ROSC at the ED. Data including demographics, pre-hospital resuscitation, ED resuscitation, post-resuscitation care and eventual outcomes were analysed.
RESULTS:
Among 921 OHCA patients, 85 (9.2%) had sustained ROSC at the ED. Nineteen patients (19/85, 22.4%) survived, with 13 (13/85, 15.3%) having intact neurology at discharge. Electrocardiogram and chest X-ray were performed in all OHCA patients, whereas computed tomography (CT) was performed inconsistently, with CT brain being most common (74/85, 87.1%), while CT pulmonary angiogram (6/85, 7.1%), abdomen and pelvis (4/85, 4.7%) and aortogram (2/85, 2.4%) were done infrequently. Only four patients (4.7%) had all five neuroprotective goals of normoxia, normocarbia, normotension, normothermia and normoglycaemia achieved in the ED. The proportion of all five neuroprotective goals being met was significantly higher ( P = 0.01) among those with neurologically intact survival (3/13, 23.1%) than those without (1/72, 1.4%).
CONCLUSION
Post-resuscitation care at the ED showed great variability, indicating gaps between recommended guidelines and clinical practice. Good quality post-resuscitation care, centred around neuroprotection goals, must be initiated promptly to achieve meaningful survival with intact neurology.
Humans
;
Out-of-Hospital Cardiac Arrest/mortality*
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Emergency Service, Hospital
;
Cardiopulmonary Resuscitation/methods*
;
Return of Spontaneous Circulation
;
Aged
;
Adult
;
Treatment Outcome
;
Electrocardiography
;
Tomography, X-Ray Computed
;
Aged, 80 and over
2.Machine learning to risk stratify chest pain patients with non-diagnostic electrocardiogram in an Asian emergency department.
Ziwei LIN ; Tar Choon AW ; Laurel JACKSON ; Cheryl Shumin KOW ; Gillian MURTAGH ; Siang Jin Terrance CHUA ; Arthur Mark RICHARDS ; Swee Han LIM
Annals of the Academy of Medicine, Singapore 2025;54(4):219-226
INTRODUCTION:
Elevated troponin, while essential for diagnosing myocardial infarction, can also be present in non-myocardial infarction conditions. The myocardial-ischaemic-injury-index (MI3) algorithm is a machine learning algorithm that considers age, sex and cardiac troponin I (TnI) results to risk-stratify patients for type 1 myocardial infarction.
METHOD:
Patients aged ≥25 years who presented to the emergency department (ED) of Singapore General Hospital with symptoms suggestive of acute coronary syndrome with no diagnostic 12-lead electrocardiogram (ECG) changes were included. Participants had serial ECGs and high-sensitivity troponin assays performed at 0, 2 and 7 hours. The primary outcome was the adjudicated diagnosis of type 1 myocardial infarction at 30 days. We compared the performance of MI3 in predicting the primary outcome with the European Society of Cardiology (ESC) 0/2-hour algorithm as well as the 99th percentile upper reference limit (URL) for TnI.
RESULTS:
There were 1351 patients included (66.7% male, mean age 56 years), 902 (66.8%) of whom had only 0-hour troponin results and 449 (33.2%) with serial (both 0 and 2-hour) troponin results available. MI3 ruled out type 1 myocardial infarction with a higher sensitivity (98.9, 95% confidence interval [CI] 93.4-99.9%) and similar negative predictive value (NPV) 99.8% (95% CI 98.6-100%) as compared to the ESC strategy. The 99th percentile cut-off strategy had the lowest sensitivity, specificity, positive predictive value and NPV.
CONCLUSION
The MI3 algorithm was accurate in risk stratifying ED patients for myocardial infarction. The 99th percentile URL cut-off was the least accurate in ruling in and out myocardial infarction compared to the other strategies.
Humans
;
Male
;
Female
;
Emergency Service, Hospital
;
Middle Aged
;
Electrocardiography
;
Machine Learning
;
Singapore
;
Chest Pain/blood*
;
Troponin I/blood*
;
Myocardial Infarction/blood*
;
Risk Assessment/methods*
;
Aged
;
Algorithms
;
Acute Coronary Syndrome/blood*
;
Adult
;
Sensitivity and Specificity
3.The joint analysis of heart health and mental health based on continual learning.
Hongxiang GAO ; Zhipeng CAI ; Jianqing LI ; Chengyu LIU
Journal of Biomedical Engineering 2025;42(1):1-8
Cardiovascular diseases and psychological disorders represent two major threats to human physical and mental health. Research on electrocardiogram (ECG) signals offers valuable opportunities to address these issues. However, existing methods are constrained by limitations in understanding ECG features and transferring knowledge across tasks. To address these challenges, this study developed a multi-resolution feature encoding network based on residual networks, which effectively extracted local morphological features and global rhythm features of ECG signals, thereby enhancing feature representation. Furthermore, a model compression-based continual learning method was proposed, enabling the structured transfer of knowledge from simpler tasks to more complex ones, resulting in improved performance in downstream tasks. The multi-resolution learning model demonstrated superior or comparable performance to state-of-the-art algorithms across five datasets, including tasks such as ECG QRS complex detection, arrhythmia classification, and emotion classification. The continual learning method achieved significant improvements over conventional training approaches in cross-domain, cross-task, and incremental data scenarios. These results highlight the potential of the proposed method for effective cross-task knowledge transfer in ECG analysis and offer a new perspective for multi-task learning using ECG signals.
Humans
;
Electrocardiography/methods*
;
Mental Health
;
Algorithms
;
Signal Processing, Computer-Assisted
;
Machine Learning
;
Arrhythmias, Cardiac/diagnosis*
;
Cardiovascular Diseases
;
Neural Networks, Computer
;
Mental Disorders
4.Research on arrhythmia classification algorithm based on adaptive multi-feature fusion network.
Mengmeng HUANG ; Mingfeng JIANG ; Yang LI ; Xiaoyu HE ; Zefeng WANG ; Yongquan WU ; Wei KE
Journal of Biomedical Engineering 2025;42(1):49-56
Deep learning method can be used to automatically analyze electrocardiogram (ECG) data and rapidly implement arrhythmia classification, which provides significant clinical value for the early screening of arrhythmias. How to select arrhythmia features effectively under limited abnormal sample supervision is an urgent issue to address. This paper proposed an arrhythmia classification algorithm based on an adaptive multi-feature fusion network. The algorithm extracted RR interval features from ECG signals, employed one-dimensional convolutional neural network (1D-CNN) to extract time-domain deep features, employed Mel frequency cepstral coefficients (MFCC) and two-dimensional convolutional neural network (2D-CNN) to extract frequency-domain deep features. The features were fused using adaptive weighting strategy for arrhythmia classification. The paper used the arrhythmia database jointly developed by the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) and evaluated the algorithm under the inter-patient paradigm. Experimental results demonstrated that the proposed algorithm achieved an average precision of 75.2%, an average recall of 70.1% and an average F 1-score of 71.3%, demonstrating high classification accuracy and being able to provide algorithmic support for arrhythmia classification in wearable devices.
Humans
;
Arrhythmias, Cardiac/diagnosis*
;
Algorithms
;
Electrocardiography/methods*
;
Neural Networks, Computer
;
Signal Processing, Computer-Assisted
;
Deep Learning
;
Classification Algorithms
5.Evaluation method and system for aging effects of autonomic nervous system based on cross-wavelet transform cardiopulmonary coupling.
Juntong LYU ; Yining WANG ; Wenbin SHI ; Pengyan TAO ; Jianhong YE
Journal of Biomedical Engineering 2025;42(4):748-756
Heart rate variability time and frequency indices are widely used in functional assessment for autonomic nervous system (ANS). However, this method merely analyzes the effect of cardiac dynamics, overlooking the effect of cardio-pulmonary interplays. Given this, the present study proposes a novel cardiopulmonary coupling (CPC) algorithm based on cross-wavelet transform to quantify cardio-pulmonary interactions, and establish an assessment system for ANS aging effects using wearable electrocardiogram (ECG) and respiratory monitoring devices. To validate the superiority of the proposed method under nonstationary and low signal-to-noise ratio conditions, simulations were first conducted to demonstrate the performance strength of the proposed method to the traditional one. Next, the proposed CPC algorithm was applied to analyze cardiac and respiratory data from both elderly and young populations, revealing that young populations exhibited significantly stronger couplings in the high-frequency band compared with their elderly counterparts. Finally, a CPC assessment system was constructed by integrating wearable devices, and additional recordings from both elderly and young populations were collected by using the system, completing the validation and application of the aging effect assessment algorithm and the wearable system. In conclusion, this study may offers methodological and system support for assessing the aging effects on the ANS.
Humans
;
Autonomic Nervous System/physiology*
;
Algorithms
;
Aging/physiology*
;
Electrocardiography/methods*
;
Heart Rate/physiology*
;
Wavelet Analysis
;
Aged
;
Signal Processing, Computer-Assisted
;
Wearable Electronic Devices
6.Research progress on the early warning of heart failure based on remote dynamic monitoring technology.
Ying SHI ; Mengwei LI ; Lixuan LI ; Wei YAN ; Desen CAO ; Zhengbo ZHANG ; Muyang YAN
Journal of Biomedical Engineering 2025;42(4):857-862
Heart failure (HF) is the end-stage of all cardiac diseases, characterized by high prevalence, high mortality, and heavy social and economic burden. Early warning of HF exacerbation is of great value for outpatient management and reducing readmission rates. Currently, remote dynamic monitoring technology, which captures changes in hemodynamic and physiological parameters of HF patients, has become the primary method for early warning and is a hot research topic in clinical studies. This paper systematically reviews the progress in this field, which was categorized into invasive monitoring based on implanted devices, non-invasive monitoring based on wearable devices, and other monitoring technologies based on audio and video. Invasive monitoring primarily involves direct hemodynamic parameters such as left atrial pressure and pulmonary artery pressure, while non-invasive monitoring covers parameters such as thoracic impedance, electrocardiogram, respiration, and activity levels. These parameters exhibit characteristic changes in the early stages of HF exacerbation. Given the clinical heterogeneity of HF patients, multi-source information fusion analysis can significantly improve the prediction accuracy of early warning models. The results of this study suggest that, compared with invasive monitoring, non-invasive monitoring technology, with its advantages of good patient compliance, ease of operation, and cost-effectiveness, combined with AI-driven multimodal data analysis methods, shows significant clinical application potential in establishing an outpatient management system for HF.
Humans
;
Heart Failure/physiopathology*
;
Monitoring, Physiologic/methods*
;
Wearable Electronic Devices
;
Remote Sensing Technology
;
Early Diagnosis
;
Electrocardiography
;
Hemodynamics
7.Design and Implementation of Non-Invasive Hemodynamic Monitoring System Based on Impedance Cardiogram Method.
Fuhao KANG ; Qi YIN ; Yanan LIU ; Lin HUANG ; Yan HANG ; Jilun YE ; Xu ZHANG
Chinese Journal of Medical Instrumentation 2025;49(1):80-88
Hemodynamic monitoring can reflect cardiac function and blood perfusion and is an indispensable monitoring method in clinical practice. Invasive hemodynamic monitoring methods represented by the thermodilution method are limited in their clinical application scope because they require vascular cannulation. Non-invasive hemodynamic monitoring has attracted extensive attention from medical companies and clinicians at home and abroad in recent years due to its advantages such as safety, non-invasiveness, continuous monitoring, simple operation, and low cost. This paper designs a non-invasive hemodynamic monitoring system based on the impedance cardiography, including hardware, algorithm, software design, and performance parameter evaluation. Among them, the hardware part mainly includes a differential high-frequency constant current source stimulation circuit, impedance cardiogram signal acquisition, and ECG signal acquisition circuit. Signal processing includes wave filtering, impedance cardiogram signal calibration, and ECG signal and impedance cardiogram signal feature point recognition. According to the collected impedance cardiogram and ECG signals, hemodynamic parameters such as heart rate (HR), stroke volume (SV), cardiac output (CO), stroke index (SI), cardiac index (CI), and cardiac contractility index (ICON) are calculated based on the Nyboer thoracic cylinder model. After testing, the key technical indicators of the system hardware are better than that of the relevant medical device standards. The system was used to collect impedance cardiogram and ECG signal data from 40 volunteers. The calculated HR, SV, and CO, three important hemodynamic indicators, were compared with the ICONCore non-invasive cardiac output monitor of OSYPKA Medical in Germany. Their Pearson correlation coefficients were 0.992 ( P<0.001), 0.948 ( P<0.001), and 0.933 ( P<0.001), respectively, verifying that the designed system has high accuracy and reliability.
Cardiography, Impedance/methods*
;
Humans
;
Hemodynamic Monitoring/methods*
;
Equipment Design
;
Signal Processing, Computer-Assisted
;
Hemodynamics
;
Algorithms
;
Monitoring, Physiologic/methods*
;
Electrocardiography
8.A myocardial infarction detection and localization model based on multi-scale field residual blocks fusion with modified channel attention.
Qiucen WU ; Xueqi LU ; Yaoqi WEN ; Yong HONG ; Yuliang WU ; Chaomin CHEN
Journal of Southern Medical University 2025;45(8):1777-1790
OBJECTIVES:
We propose a myocardial infarction (MI) detection and localization model for improving the diagnostic accuracy for MI to provide assistance to clinical decision-making.
METHODS:
The proposed model was constructed based on multi-scale field residual blocks fusion modified channel attention (MSF-RB-MCA). The model utilizes lead II electrocardiogram (ECG) signals to detect and localize MI, and extracts different levels of feature information through the multi-scale field residual block. A modified channel attention for automatic adjustment of the feature weights was introduced to enhance the model's ability to focus on the MI region, thereby improving the accuracy of MI detection and localization.
RESULTS:
A 5-fold cross-validation test of the model was performed using the publicly available Physikalisch-Technische Bundesanstalt (PTB) dataset. For MI detection, the model achieved an accuracy of 99.96% on the test set with a specificity of 99.84% and a sensitivity of 99.99%. For MI localization, the accuracy, specificity and sensitivity were 99.81%, 99.98% and 99.65%, respectively. The performances of the model for MI detection and localization were superior to those of other comparison models.
CONCLUSIONS
The proposed MSF-RB-MCA model shows excellent performance in AI detection and localization based on lead II ECG signals, demonstrating its great potential for application in wearable devices.
Myocardial Infarction/diagnosis*
;
Humans
;
Electrocardiography/methods*
;
Signal Processing, Computer-Assisted
;
Algorithms
;
Sensitivity and Specificity
9.A novel approach for assessing quality of electrocardiogram signal by integrating multi-scale temporal features.
Cheng CHEN ; Aihua ZHANG ; Yurun MA ; Yusheng QI ; Jiaqi LI
Journal of Biomedical Engineering 2024;41(6):1169-1176
During long-term electrocardiogram (ECG) monitoring, various types of noise inevitably become mixed with the signal, potentially hindering doctors' ability to accurately assess and interpret patient data. Therefore, evaluating the quality of ECG signals before conducting analysis and diagnosis is crucial. This paper addresses the limitations of existing ECG signal quality assessment methods, particularly their insufficient focus on the 12-lead multi-scale correlation. We propose a novel ECG signal quality assessment method that integrates a convolutional neural network (CNN) with a squeeze and excitation residual network (SE-ResNet). This approach not only captures both local and global features of ECG time series but also emphasizes the spatial correlation among ECG signals. Testing on a public dataset demonstrated that our method achieved an accuracy of 99.5%, sensitivity of 98.5%, and specificity of 99.6%. Compared with other methods, our technique significantly enhances the accuracy of ECG signal quality assessment by leveraging inter-lead correlation information, which is expected to advance the development of intelligent ECG monitoring and diagnostic technology.
Electrocardiography/methods*
;
Humans
;
Signal Processing, Computer-Assisted
;
Neural Networks, Computer
;
Algorithms
10.Development of intelligent monitoring system based on Internet of Things and wearable technology and exploration of its clinical application mode.
Lixuan LI ; Hong LIANG ; Yong FAN ; Wei YAN ; Muyang YAN ; Desen CAO ; Zhengbo ZHANG
Journal of Biomedical Engineering 2023;40(6):1053-1061
Wearable monitoring, which has the advantages of continuous monitoring for a long time with low physiological and psychological load, represents a future development direction of monitoring technology. Based on wearable physiological monitoring technology, combined with Internet of Things (IoT) and artificial intelligence technology, this paper has developed an intelligent monitoring system, including wearable hardware, ward Internet of Things platform, continuous physiological data analysis algorithm and software. We explored the clinical value of continuous physiological data using this system through a lot of clinical practices. And four value points were given, namely, real-time monitoring, disease assessment, prediction and early warning, and rehabilitation training. Depending on the real clinical environment, we explored the mode of applying wearable technology in general ward monitoring, cardiopulmonary rehabilitation, and integrated monitoring inside and outside the hospital. The research results show that this monitoring system can be effectively used for monitoring of patients in hospital, evaluation and training of patients' cardiopulmonary function, and management of patients outside hospital.
Humans
;
Artificial Intelligence
;
Internet of Things
;
Wearable Electronic Devices
;
Monitoring, Physiologic/methods*
;
Electrocardiography
;
Internet

Result Analysis
Print
Save
E-mail