1.Development goals and strategies of ecological agriculture of Chinese materia medica.
Chuan-Zhi KANG ; Si-Qi LIU ; Bang-Xing HAN ; Tao ZHOU ; Xiao WANG ; Da-Hui LIU ; Ye YANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(1):42-47
This paper aims to contribute to guaranteeing the stable development and enhancing the understanding of ecological agriculture of Chinese materia medica so that the national strategy and industrial demand can be better served. It first introduces current traditional Chinese medicine(TCM)policy and industrial development status from five aspects, including policy guarantee, theoretical support, technological innovation, standardization system, and brand influence. Then, the paper analyzes the development dilemma of TCM agriculture in production and quality increase and ecological environment protection. It also proposes the development goals of ecological agriculture of Chinese materia medica that meet the current industrial development demand, which are reducing chemical fertilizers, pesticides, and carbon emissions, improving quality, increasing efficiency, and protecting ecological environment. In addition, the new development goals are interpreted through case studies. Finally, this paper proposes four development strategies for ecological agriculture of Chinese materia medica: conducting research on the pattern and spatial and temporal variations of nationwide TCM production areas; studying the internal and external ecological memories of medicinal plant growth from the perspectives of genetic variations and environmental adaptation variations and elucidating their contributions to the formation of quality; carrying out selection and breeding of stress-resistant varieties for ecological agriculture of Chinese materia medica, the optimization of key technologies for soil improvement and restoration and green prevention and control against diseases and pests, and the improvement of quality; carrying out research on the quality assurance and value realization of ecological products made from TCM. This research can provide guidance for policy formulation, theoretical development of the discipline, and the enhancement of industrial technology for ecological agriculture of Chinese materia medica.
Agriculture/methods*
;
China
;
Drugs, Chinese Herbal
;
Plants, Medicinal/chemistry*
;
Ecosystem
;
Materia Medica
;
Medicine, Chinese Traditional
2.Carbon-friendly ecological cultivation mode of Dendrobium huoshanense based on greenhouse gas emission measurement.
Di TIAN ; Jun-Wei YANG ; Bing-Rui CHEN ; Xiu-Lian CHI ; Yan-Yan HU ; Sheng-Nan TANG ; Guang YANG ; Meng CHENG ; Ya-Feng DAI ; Shi-Wen WANG
China Journal of Chinese Materia Medica 2025;50(1):93-101
Ecological cultivation is an important way for the sustainable production of traditional Chinese medicine in the context of the carbon peaking and carbon neutrality goals. Facility cultivation and simulative habitat cultivation modes have been developed and applied to develop the endangered Dendrobium huoshanense on the basis of protection. However, the differences in the greenhouse gas emissions and global warming potential of these cultivation modes remain unexplored, which limits the accurate assessment of carbon-friendly ecological cultivation modes of D. huoshanense. Greenhouse gas emission flux monitoring based on the static chamber method provides an effective way to solve this problem. Therefore, this study conducted a field experiment in the facility cultivation and simulative habitat cultivation modes at a D. huoshanense cultivation base in Dabie Mountains, Anhui Province. From April 2023 to March 2024, samples of greenhouse gases were collected every month, and the concentrations of CO_2, CH_4, and N_2O of the samples were then detected by gas chromatography. The greenhouse gas emission fluxes, cumulative emissions, and global warming potential were further calculated, and the following results were obtained.(1)The two cultivation modes of D. huoshanense showed significant differences in greenhouse gas emission fluxes, especially the CO_2 emission flux, with a pattern of facility cultivation>simulative habitat cultivation [(35.60±11.70)mg·m~(-2)·h~(-1) vs(2.10±4.59)mg·m~(-2)·h~(-1)].(2) The annual cumulative CO_2 emission flux in the case of facility cultivation was significantly higher than that of simulative habitat cultivation[(3 077.00±842.00)kg·hm~(-2) vs(221.00±332.00)kg·hm~(-2)], while no significant difference was found in annual cumulative CH_4 and N_2O emission fluxes.(3) The facility cultivation mode had a significantly higher global warming potential than the simulative habitat cultivation mode [(3 053.00±847.00)kg·hm~(-2) vs(196.00±362.00)kg·hm~(-2)]. Overall, the simulative habitat cultivation of D. huoshanense has obvious carbon-friendly characteristics compared with facility cultivation, which is in line with the concept of ecological cultivation of medicinal plants. This study is of great reference significance for the implementation and promotion of the ecological cultivation mode of D. huoshanense under carbon peaking and carbon neutrality goals.
Dendrobium/chemistry*
;
Greenhouse Gases/metabolism*
;
Carbon/analysis*
;
Ecosystem
;
Carbon Dioxide/metabolism*
;
China
;
Global Warming
3.Effects of understory environmental factors on understory planting of medicinal plants.
Ding-Mei WEN ; Hong-Biao ZHANG ; Feng-Yuan QIN ; Chao-Qun XU ; Dou-Dou LI ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2025;50(5):1164-1171
Understory planting of medicinal plants is a new planting mode that connects Chinese herbal medicine(CHM) with forest resources.The complex and variable understory environmental factors will inevitably affect the yield and quality of understory CHM.This research summarized the research progress on understory planting of medicinal plants based on forest types and environmental factors within the forest from the perspectives of understory light, air temperature and humidity, soil characteristics, and the interaction between crops within the forest.The results showed that the complex and variable light, temperature and humidity, and soil factors(such as fertility, acidity and alkalinity, and microorganisms) under the forest could affect the yield and quality of medicinal plants to varying degrees through physiological activities such as photosynthesis and respiration, resulting in a significant increase or decrease in yield and quality compared to open field cultivation.In addition, the competition or mutual benefit between different crops within the forest could lead to differences in the yield and quality of understory medicinal plants compared to open field cultivation.A reasonable combination of planting could achieve resource sharing and complementary advantages.Therefore, conducting systematic research on the effects of understory environmental factors on the yield and content of medicinal plants with different growth and development characteristics can provide theoretical guidance and technical references for formulating comprehensive strategies for understory planting of medicinal plants, such as selecting suitable medicinal plant varieties, optimizing planting density, and conducting reasonable forest management, thus contributing to the sustainable development and ecological protection of CHM.
Plants, Medicinal/growth & development*
;
Forests
;
Soil/chemistry*
;
Environment
;
Ecosystem
;
Temperature
4.Evaluation of potential suitable habitats for Gastrodia elata in China under future climate and land use change scenarios.
Hua-Qian GONG ; Xu-Dong GUO ; Shao-Yang XI ; Gong-Han TU ; Fei CHEN ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(14):3887-3897
Climate and land use changes may significantly impact the habitat distribution of Gastrodia elata, an endangered traditional medicinal plant. Accurately predicting its future potential suitable habitats is crucial for its conservation and sustainable development. This study integrates current distribution data of G. elata with 56 environmental variables and uses the MaxEnt model to predict changes in its suitable habitats under current climate conditions and four future climate scenarios(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The results show that October precipitation and December minimum temperature are key environmental factors influencing its distribution. Under the current climate, optimal habitats for G. elata are concentrated in montane forest areas in Sichuan, Yunnan, Guizhou, and Hubei, which meet the species' requirements for understory growth. Across all future scenarios, the suitable habitat of G. elata consistently shows a stable northward shift, with a steady increase in suitable areas, extending to the middle and lower reaches of the Yangtze River and the Huang-Huai region, and even expanding into Liaoning, Jilin, and southern Heilongjiang. Land use analysis, taking into account the protection of arable land and the utilization of forest resources, indicates that by 2100, under future climate conditions, arable land in medium-to high-suitability areas is expected to increase by 30%-124%. While the conversion of non-suitable forest land into suitable habitats is projected to increase by 5%-52%, the growth of medium-to high-suitability areas within forests is relatively modest, ranging from 1% to 24%. These findings highlight the need to balance agricultural expansion with forest resource conservation to ensure the long-term sustainability of G. elata and provide scientific guidance for future suitable habitat management.
Ecosystem
;
China
;
Climate Change
;
Gastrodia/growth & development*
;
Conservation of Natural Resources
;
Plants, Medicinal/growth & development*
5.Harnessing chemical communication in plant-microbiome and intra-microbiome interactions.
Hongfu LI ; Yaxin HU ; Siqi CHEN ; Yusufjon GAFFOROV ; Mengcen WANG ; Xiaoyu LIU
Journal of Zhejiang University. Science. B 2025;26(10):923-934
Chemical communication in plant-microbiome and intra-microbiome interactions weaves a complex network, critically shaping ecosystem stability and agricultural productivity. This non-contact interaction is driven by small-molecule signals that orchestrate crosstalk dynamics and beneficial association. Plants leverage these signals to distinguish between pathogens and beneficial microbes, dynamically modulate immune responses, and secrete exudates to recruit a beneficial microbiome, while microbes in turn influence plant nutrient acquisition and stress resilience. Such bidirectional chemical dialogues underpin nutrient cycling, co-evolution, microbiome assembly, and plant resistance. However, knowledge gaps persist regarding validating the key molecules involved in plant-microbe interactions. Interpreting chemical communication requires multi-omics integration to predict key information, genome editing and click chemistry to verify the function of biomolecules, and artificial intelligence (AI) models to improve resolution and accuracy. This review helps advance the understanding of chemical communication and provides theoretical support for agriculture to cope with food insecurity and climate challenges.
Microbiota/physiology*
;
Plants/microbiology*
;
Artificial Intelligence
;
Ecosystem
6.Methodological breakthroughs and challenges in research of soil phage microecology.
Xiaofang WANG ; Shuo WANG ; Keming YANG ; Yike TANG ; Yangchun XU ; Qirong SHEN ; Zhong WEI
Chinese Journal of Biotechnology 2025;41(6):2310-2323
Phages, as obligate bacterial and archaeal parasites, constitute a virus group of paramount ecological significance due to their exceptional abundance and genetic diversity. These biological entities serve as critical regulators in Earth's ecosystems, driving biogeochemical cycles, energy fluxes, and ecosystem services across terrestrial and marine environments. Within soil microbiomes, phages function as microbial "dark matter," maintaining the soil-plant system balance through precise modulation of the microbial community structure and functional dynamics. Despite the growing research interests in soil phages in recent years, the proportion of such studies in environmental virology remains disproportionately low, which is primarily attributed to researchers' limited familiarity with the research methodologies for phage microecology, incomplete technical frameworks, and inherent challenges posed by soil environmental complexity. To address these challenges, this review synthesizes cutting-edge methodologies for soil phage investigation from four aspects: (1) tangential flow filtration (TFF)-based phage enrichment strategies; (2) integrated quantification approaches combining double-layer agar plating, epifluorescence microscopy, and flow cytometry; (3) multi-omics analytical pipelines leveraging metagenomics and viromics datasets; and (4) computational frameworks merging machine learning algorithms with eco-evolutionary theory for deciphering phage-host interaction networks. Through comparative analysis of methodological principles, technical merits, and application scopes, we establish a comprehensive workflow for soil phage research. Future research in this field should prioritize: (1) construction of soil phage resource libraries, (2) exploration of RNA phages based on transcriptomes, (3) functional characterization of unknown genes, and (4) deep integration and interaction validation of multi-omics data. This systematic methodological synthesis provides critical technical references for addressing fundamental challenges in characterizing soil phages regarding the community structure, functional potential, and interaction mechanisms with hosts.
Bacteriophages/physiology*
;
Soil Microbiology
;
Ecosystem
;
Microbiota
;
Metagenomics/methods*
7.Soil carbon and nitrogen dynamics affect bacterial and fungal communities and their interactions: a review.
Xinyuan LIU ; Yue LI ; Ziyan WEI ; Zhujun WANG
Chinese Journal of Biotechnology 2025;41(10):3701-3718
The escalating pressure from global population growth, climate change, and resource consumption is intensifying the burden on traditional agricultural production. Against this backdrop, soil degradation and pollution present increasingly severe challenges, creating a vicious cycle with rising food demands. Maintaining soil health and its ecosystem services has thus become a critical prerequisite for achieving sustainable agriculture in the future. This review explores the impacts of soil carbon (C) and nitrogen (N) dynamics on soil microbial communities and their interactions. Soil C and N are key determinants of microbial diversity and community structure, intrinsically linked to soil C/N cycling, crop productivity, and ecological balance. Environmental factors such as nitrogen fertilizer application, organic matter amendment application, litter decomposition, elevated CO2 concentrations, and nitrogen deposition significantly influence soil C and N dynamics. Changes in soil C and N content regulate microbial community dynamics and the synergistic, competitive, and antagonistic interactions among microorganisms. Meanwhile, microbial communities actively respond to alterations in soil C and N availability. The resulting shifts in microbial communities and their interactions subsequently regulate soil C/N cycling and ecosystem stability, ultimately influencing ecosystem functions. By elucidating the mechanisms underlying soil carbon-nitrogen-microbial interactions, this review significantly advances our understanding of soil ecosystem responses and feedback mechanisms in the context of global change, while also providing crucial practical guidance for enhancing soil fertility and promoting sustainable agricultural development through microbial regulation.
Soil Microbiology
;
Nitrogen/metabolism*
;
Carbon/metabolism*
;
Soil/chemistry*
;
Bacteria/growth & development*
;
Fungi/metabolism*
;
Ecosystem
;
Fertilizers
;
Agriculture
8.Advantages and potential ecological risks of genetically modified crops.
Qingjie CHEN ; Yuqing CHENG ; Yu MA ; Ning XU
Chinese Journal of Biotechnology 2025;41(10):3891-3906
Genetically modified (GM) crops, as a pivotal innovation in modern agriculture, exhibit significant advantages such as pest and disease resistance, herbicide tolerance, stress tolerance, and yield enhancement. However, their widespread adoption has been associated with potential ecological risks, including weediness of transgenic plants, gene flow, emergence of novel viral strains in virus-resistant crops, impacts on non-target organisms and soil ecosystems, and evolution of target pest resistance. This review focuses on the dual characteristics of GM crops, systematically examining their agronomic benefits and the underlying mechanisms of ecological risks. This review provides a theoretical foundation for optimizing the development of GM crops and ecological risk management, facilitating sustainable agricultural practices.
Plants, Genetically Modified/growth & development*
;
Crops, Agricultural/growth & development*
;
Ecosystem
;
Ecology
9.Prediction of global potential growth areas for Panax ginseng based on GMPGIS system and MaxEnt model.
Hui-Hui ZHANG ; Xiang-Xiao MENG ; Yu-Lin LIN ; Shi-Lin CHEN ; Lin-Fang HUANG
China Journal of Chinese Materia Medica 2023;48(18):4959-4966
The suitable habitat for the endangered and valuable medicinal herb Panax ginseng is gradually decreasing. It is crucial to investigate its suitable growing areas in China for global protection and sustainable utilization of P. ginseng. In this study, 371 distribution points of P. ginseng were collected, and 21 environmental factors were used as ecological indicators. The geographic information system for global medicinal plants(GMPGIS) system, MaxEnt model, and Thiessen polygon method were used to analyze the potential suitable areas for P. ginseng globally. The results showed that the key environmental variables affecting P. ginseng were precipitation in the hottest quarter(Bio18) and the coefficient of temperature seasonality(Bio4). The suitable habitats for P. ginseng were mostly located in the "One Belt, One Road" countries such as China, Japan, South Korea, North Korea, and Russia. The highly suitable habitats were mainly distributed along mountain ranges in southeastern Shandong, southern Shanxi and Shaanxi, northern Jiangsu, and northwestern Henan of China. Data analysis indicated that the current P. ginseng planting sites were all in high suitability zones, and the Thiessen polygon results showed that the geographic locations of P. ginseng production companies were unbalanced and urgently needed optimization. This study provides data support for P. ginseng planting site selection, scientific introduction, production layout, and long-term development planning.
Panax
;
Ecosystem
;
China
;
Geographic Information Systems
;
Temperature
;
Plants, Medicinal
10.Opportunities, challenges and suggestions for the development of plastic degradation and recycling under the context of circular bioeconomy.
Rui XU ; Fang CHEN ; Chenjun DING
Chinese Journal of Biotechnology 2023;39(5):1867-1882
At present, the negative impact caused by white pollution has spread to all aspects of human society economy, ecosystem, and health, which causes severe challenges for developing the circular bioeconomy. As the largest plastic production and consumption country in the world, China has shouldered an important responsibility in plastic pollution control. In this context, this paper analyzed the relevant strategies of plastic degradation and recycling in the United States, Europe, Japan and China, measured the literature and patents in this field, analyzed the status quo of technology from the perspective of research and development trends, major countries, major institutions, and discussed the opportunities and challenges faced by the development of plastic degradation and recycling in China. Finally, we put forward future development suggestions which include the integration of policy system, technology path, industry development and public cognition.
Humans
;
Plastics
;
Ecosystem
;
Environmental Pollution
;
Recycling
;
Policy

Result Analysis
Print
Save
E-mail