1.Lipocalin-2-Mediated Insufficient Oligodendrocyte Progenitor Cell Remyelination for White Matter Injury After Subarachnoid Hemorrhage via SCL22A17 Receptor/Early Growth Response Protein 1 Signaling.
Qiang LI ; Xufang RU ; Yang YANG ; Hengli ZHAO ; Jie QU ; Weixiang CHEN ; Pengyu PAN ; Huaizhen RUAN ; Chaojun LI ; Yujie CHEN ; Hua FENG
Neuroscience Bulletin 2022;38(12):1457-1475
Insufficient remyelination due to impaired oligodendrocyte precursor cell (OPC) differentiation and maturation is strongly associated with irreversible white matter injury (WMI) and neurological deficits. We analyzed whole transcriptome expression to elucidate the potential role and underlying mechanism of action of lipocalin-2 (LCN2) in OPC differentiation and WMI and identified the receptor SCL22A17 and downstream transcription factor early growth response protein 1 (EGR1) as the key signals contributing to LCN2-mediated insufficient OPC remyelination. In LCN-knockdown and OPC EGR1 conditional-knockout mice, we discovered enhanced OPC differentiation in developing and injured white matter (WM); consistent with this, the specific inactivation of LCN2/SCl22A17/EGR1 signaling promoted remyelination and neurological recovery in both atypical, acute WMI due to subarachnoid hemorrhage and typical, chronic WMI due to multiple sclerosis. This potentially represents a novel strategy to enhance differentiation and remyelination in patients with white matter injury.
Mice
;
Animals
;
Remyelination/physiology*
;
Oligodendrocyte Precursor Cells/metabolism*
;
White Matter
;
Subarachnoid Hemorrhage/metabolism*
;
Lipocalin-2/metabolism*
;
Early Growth Response Protein 1/metabolism*
;
Oligodendroglia/metabolism*
;
Mice, Knockout
;
Cell Differentiation/physiology*
;
Brain Injuries/metabolism*
2.Expression of EGR1 gene and location of EGR1 protein in differentiation of bovine skeletal muscle-derived satellite cells.
Wei Wei ZHANG ; Shu Li SHAO ; Yang PAN ; Shan Shan LI
Chinese Journal of Applied Physiology 2019;35(1):5-8
OBJECTIVE:
To investigate the expression of EGR1 gene and the localization of EGR1 protein in bovine skeletal muscle-derived satellite cells (MDSCs), as well as to investigate the mechanism that EGR1 protein enters the nucleus.
METHODS:
Bovine MDSCs were cultured in differentiation medium for 1 day, 3 days and 5 days, respectively, and each group was triplicate. The expression of EGR1 gene and the localization of EGR1 protein were studied at different differentiation period in MDSCs by qRT-PC and Western blot. Moreover, the changes on the expression of endogenous EGR1 gene and EGR1 proteins were explored by CRISPRi, site-directed mutagenesis and laser confocal method.
RESULTS:
The results from the qRT-PCR and Western blot showed that the expressions of EGR1 gene on transcription level and translation level were significantly higher in differentiated cells than those in undifferentiated cells. The highest expression was found on the third day after the differentiation, and then began to decline. Immunofluorescence assays showed that EGR1 proteins were preferentially expressed in differentiated MDSCs, and increased along with the increase of number of myotubes. Confocal observation revealed that some EGR1 proteins were transferred into the nucleus in the differentiation of cells, however, the EGR1 proteins would not be detected in the differentiated MDSCs nuclei if a site directed mutagenesis (serine) on EGR1 protein occurred.
CONCLUSION
During the differentiation of bovine skeletal muscle satellite cells, the transcriptional level of EGR1 gene is increased, and some EGR1 proteins are transferred into the nucleus. The serine phosphorylation at position 533 of the C terminal of EGR1 protein is necessary for the nucleus transfer.
Animals
;
Cattle
;
Cell Differentiation
;
Cell Nucleus
;
Cells, Cultured
;
Early Growth Response Protein 1
;
genetics
;
metabolism
;
Muscle Fibers, Skeletal
;
Satellite Cells, Skeletal Muscle
;
metabolism
3.Effect of DPP4 inhibitor sitagliptin on expressions of early growth response-1 and fibronectin in the kidney of ApoE gene knockout mice.
Wenqi LI ; Meiping GUAN ; Zongji ZHENG ; Yaoming XUE
Journal of Southern Medical University 2016;36(1):126-130
OBJECTIVETo investigate the effects of the DPP4 inhibitor sitagliptin on the expressions of early growth response-1 (Egr-1) and fibronectin in the kidney of ApoE gene knockout mice.
METHODSEight-week-old male ApoE gene knockout mice were randomly divided into sitagliptin + apoE(-/-) group and apoE(-/-) group (n=6), with 6 C57BL mice as the normal control group. After feeding with high-fat diet and drug treatment for 16 weeks, the mice underwent intraperitoneal glucose tolerance test (IPGTT) and were measured for 24-h urinary albumin using ELISA. All the mice were then sacrificed to examine the changes of blood lipid profile and for detection of Egr-1 and fibronectin mRNA and proteins in the renal tissue using real-time PCR and Western blotting.
RESULTSThe mice in both apoE(-/-) group and sitagliptin+apoE(-/-) group all showed prominently increased blood lipids as compared with the control group (P<0.05) without significant differences between the two apoE(-/-) groups. The level of HDL was significantly higher in sitagliptin +apoE(-/-) group than in apoE(-/-) group (P<0.001) and control group (P<0.001). IPGTT showed no significant differences in the levels of blood glucose among the 3 groups. The excretion of urinary albumin was increased in apoE(-/-) group compared with the control group (P<0.01), but was significantly lower in sitagliptin+ apoE(-/-) group than in apoE(-/-) group (P<0.01). Real-time PCR and Western blotting showed significantly decreased mRNA and protein expressions of renal cortical Egr-1 and fibronectin in sitagliptin+apoE(-/-) group compared with apoE(-/-) group.
CONCLUSIONSitagliptin can reduce the renal expression of fibronectin by regulating the expression of Egr-1 to achieve renal protection.
Animals ; Apolipoproteins E ; genetics ; Diet, High-Fat ; Dipeptidyl-Peptidase IV Inhibitors ; pharmacology ; Early Growth Response Protein 1 ; metabolism ; Fibronectins ; metabolism ; Gene Knockout Techniques ; Kidney ; metabolism ; Lipids ; blood ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Real-Time Polymerase Chain Reaction ; Sitagliptin Phosphate ; pharmacology
4.Expressions of inflammatory and fibrogenic factors in perinephric and subcutaneous adipose tissues of patients with adrenocorticotropic hormone-independent Cushing's syndrome.
Chun-Yan WU ; Hui-Jian ZHANG ; Cun-Xia FAN ; Peng WU ; Qiang WEI ; Ying-Ying CAI ; Shao-Zhou ZOU ; Ling WANG ; Yao-Ming XUE ; Mei-Ping GUAN
Journal of Southern Medical University 2016;37(4):563-566
OBJECTIVETo investigate the expressions of inflammation- and fibrosis-related genes in perinephric and subcutaneous adipose tissues in patients with adrenocorticotropic hormone (ACTH)-independent Cushing's syndrome.
METHODSThe perinephric and subcutaneous adipose tissues adipose tissues were obtained from 8 patients with ACTH-independent Cushing's syndrome undergoing laparoscopic retroperitoneal adrenalectomy. Real-time PCR was used to detect the mRNA expression levels of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), matrix metallopeptidase 2 (MMP-2), TIMP metallopeptidase inhibitor 1 (TIMP-1), early growth response 1 (EGR1), CCAAT/enhancer binding protein β(CEBPβ), uncoupling protein 1(UCP-1), PPARγ coactivator 1 alpha (PGC1α) and cell death-inducing DFFA-like effector a (CIDEA).
RESULTSThe mRNA level of CIDEA was significantly higher in the perinephric adipose tissue (peri-N) than in the subcutaneous adipose tissue (subQ) (P<0.05). The expressions of CEBPβ, UCP-1, and PGC1α mRNA in the peri-N were similar with those in the subQ. The expressions of IL-6, TIMP1 and EGR1 mRNA in the subQ were significantly higher than those in the peri-N (P<0.05). No significant difference in TNF-α and MMP-2 mRNA levels was found between peri-N and subQ.
CONCLUSIONThe expression levels of the inflammation- and fibrosis-related genes are higher in the subQ than in the peri-N of patients with ACTH-independent Cushing's syndrome, suggesting that chronic exposure to endogenous hypercortisolism may cause adipose tissue dysfunction.
Adrenalectomy ; Adrenocorticotropic Hormone ; CCAAT-Enhancer-Binding Protein-beta ; metabolism ; Cushing Syndrome ; metabolism ; surgery ; Early Growth Response Protein 1 ; metabolism ; Humans ; Matrix Metalloproteinase 2 ; metabolism ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; metabolism ; Real-Time Polymerase Chain Reaction ; Subcutaneous Fat ; metabolism ; Tissue Inhibitor of Metalloproteinase-1 ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism ; Uncoupling Protein 1 ; metabolism
5.Effect of Guishen Pill on expression levels of Oct-4, MVH, and Egr-1 in mice with diminished ovarian reserve.
Dan-Dan CUI ; Wen-Wen MA ; Lu WEN ; Kun-Kun SONG ; Jia-Hui DING ; Cong HUANG ; Ming-Min ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(1):76-80
OBJECTIVETo study the effect of Guishen Pill (GSP) on expression levels of Oct-4, MVH, and Egr-1 in mice with diminished ovarian reserve (DOR).
METHODSTotally 40 female C57BL/6J mice were randomly divided into 4 groups, the normal control group, the model group, the GSP group, and the dehydroepiandrosterone (DHEA) group, 10 in each group. Pregnant mare serum gonadotropin (PMSG), human chorionic gonadotropin (HCG), and prostaglandin F2α (PGF2α) were sequentially administrated to produce superovulation. The DOR model was established by exposing to ozone inhalation. Mice in the GSP group were intragastrically administered with GSP at 0.3 mL. Those in the DHEA group were intragastrically administered with DHEA at 0.3 mL. Equal volume of normal saline was intragastrically administered to mice in the normal control group and the model group. All mice wer treated for 21 days. Serum levels of estrogen (E2), progestogen (P), and anti-Müllerian hormone (AMH) were measured by ELISA. Changes of Oct-4, anti-AMH, and early growth response gene-1 (Egr-1) mRNA in ovaries were dtected by Real-time PCR.
RESULTSCompared with the model group, serum levels of E2, P, and AMH, as well as contents of estrogen receptor (ER), progestogen receptor (PR), MVH, and Oct-4 mRNA significantly increased in the GSP group and the DHEA group (P < 0.05).
CONCLUSIONGSP could improve expression levels of Oct-4, MVH, and Egr-1 mRNA in DOR mice and their ovarian function.
Animals ; Anti-Mullerian Hormone ; metabolism ; Dehydroepiandrosterone ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Early Growth Response Protein 1 ; metabolism ; Estrogens ; Female ; Mice ; Mice, Inbred C57BL ; Octamer Transcription Factor-3 ; metabolism ; Ovarian Reserve ; Ovary ; Pregnancy ; Receptors, Estrogen ; metabolism ; Superovulation
6.Increased Egr-1 binding to promoter induced by histone hyperacetylation promotes gdnf gene transcription.
Zhouru LI ; Jie LIU ; Yu LEI ; Haibo NI ; Hongxing CAI ; Baole ZHANG
Journal of Southern Medical University 2015;35(5):697-701
OBJECTIVETo investigate the mechanism of high transcription of the glial cell-line derived neurotrophic factor (gdnf) gene induced by hyperacetylation of histone H3 lysine 9 (H3K9) at its promoter region II in rat C6 glioma cells.
METHODSThe acetylation level of H3K9 at Egr-1 binding site in gdnf gene promoter region II and the binding capacity of Egr-1 to its binding site in gdnf promoter were examined by ChIP-PCR in C6 astroglioma cells and normal rat astrocytes, and its changes were investigated in C6 astroglioma cells after treatment with histone acetyltransferase inhibitor curcumin or deacetylase inhibitor trichostatin A.
RESULTSCompared normal astrocytes, C6 astroglioma cells showed significantly increased acetylation level of H3K9 at Egr-1 binding site in gdnf gene promoter region II and Egr-1 binding capacity (P<0.01). Curcumin treatment significantly reduced H3K9 acetylation level at Egr-1 binding site and decreased both the binding of Egr-1 to promoter region II and gdnf mRNA levels in C6 astroglioma cells (P<0.05). Conversely, increased H3K9 acetylation at the Egr-1 binding site induced by trichostatin A significantly increased the binding of Egr-1 to promoter region II and gdnf mRNA expression levels (P<0.05).
CONCLUSIONH3K9 hyperacetylation induces increased Egr-1 binding to gdnf gene promoter II, which might be the reason for the high transcription level of gdnf gene in rat C6 glioma cells.
Acetylation ; Animals ; Astrocytes ; metabolism ; Binding Sites ; Cell Line, Tumor ; Early Growth Response Protein 1 ; metabolism ; Glial Cell Line-Derived Neurotrophic Factor ; genetics ; Glioma ; metabolism ; Histones ; chemistry ; Promoter Regions, Genetic ; Protein Processing, Post-Translational ; RNA, Messenger ; Rats ; Transcription, Genetic
7.Factors affecting expression of differentiation-related gene NDRG1.
Guoxin ZHANG ; Song BAI ; Yingying ZOU ; Fang WANG
Chinese Journal of Pathology 2014;43(5):356-358
Animals
;
Cadherins
;
metabolism
;
Cell Cycle Proteins
;
genetics
;
metabolism
;
Cell Differentiation
;
Cell Line, Tumor
;
Early Growth Response Protein 1
;
genetics
;
metabolism
;
Estradiol
;
physiology
;
Eukaryotic Initiation Factor-3
;
metabolism
;
Genes, Tumor Suppressor
;
physiology
;
HSP90 Heat-Shock Proteins
;
metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Intracellular Signaling Peptides and Proteins
;
genetics
;
metabolism
;
Iron
;
metabolism
;
Neoplasms
;
metabolism
;
pathology
8.Neurons in NAc core and BLA are activated during cocaine context-associated reward memory retrieval in mice.
Jun-Jun WANG ; Wen-Qing YAO ; Yue-Jun CHEN ; Lan MA ; Ye-Zheng TAO
Acta Physiologica Sinica 2014;66(5):545-558
The intense associative memories that develop between cocaine-paired contexts and rewarding stimuli make addiction hard to cure by contributing to cocaine seeking and relapse. So it's of great importance to examine the neurobiological basis of addiction memory. Cocaine conditioned place preference (CPP) used in this study is a form of Pavlovian conditioning which can establish associations between drug and contextual factors. c-Fos and Zif268 are commonly used immediate early gene (IEG) makers to identify neurons that are activated after a stimulus or behavioral conditioning. This study was designed to reveal neuronal c-Fos, Zif268 expression pattern in 10 brain regions following cocaine context-associated reward memory retrieval in mice, combining animal behavioral study and immunofluorescence method. C57BL/6 mice were randomly divided into 3 groups: Saline retrieval, Cocaine retrieval, and No retrieval of cocaine groups. Cocaine retrieval and No retrieval of cocaine underwent CPP training (one side paired with cocaine, and the other side with saline) except that No retrieval of cocaine group didn't undergo CPP test. Saline retrieval group received saline injections (i.p) on both sides. The results showed that: Neuronal c-Fos, Zif268 protein expression levels in nucleus accumbens (NAc) core both were elevated in Cocaine retrieval group compared with those in Saline retrieval (Control) group during cocaine context-associated reward memory retrieval. Zif268 protein expression level in basolateral amygdala (BLA) was also elevated in Cocaine retrieval group compared with that in control mice. Elevation was not seen in other regions such as hippocampus, prefrontal cortex (PFC). Thus, NAc core and BLA were activated during cocaine context-associated reward memory retrieval. The results suggest that neurons that are activated in NAc core and BLA are crucial basis of cocaine context-associated reward memory.
Animals
;
Basolateral Nuclear Complex
;
cytology
;
Cocaine
;
pharmacology
;
Conditioning (Psychology)
;
Early Growth Response Protein 1
;
metabolism
;
Hippocampus
;
Memory
;
Mice
;
Mice, Inbred C57BL
;
Neurons
;
metabolism
;
Nucleus Accumbens
;
metabolism
;
Prefrontal Cortex
;
Proto-Oncogene Proteins c-fos
;
metabolism
;
Reward
9.Gene-targeted radiation therapy mediated by radiation-sensitive promoter in lung adenocarcinoma and the feasibility of micro-PET/CT in evaluation of therapeutic effectiveness in small animals.
Haoping XU ; Rui GUO ; Yening JIN ; Biao LI
Chinese Journal of Oncology 2014;36(5):329-334
OBJECTIVETo explore the combined anti-tumor effect of radiation therapy and gene-targeted suppression of tumor neovasculature in lung adenocarcinoma in vivo, and to explore the feasibility of micro-PET/CT in dynamic evaluation of treatment effectiveness.
METHODSThirty 5-6-week old male BALB/c nude mice were used in this study. The mouse models of xenotransplanted human lung adenocarcinoma were divided into 5 groups at random, six mice in each group: the control group, radiation treatment alone group and three groups of recombinant baculovirus plus radiation treatment (intratumoral injection, tail vein injection, and intramuscular injection). The tumor volume was measured every 2 days. Growth delay time (GD) and growth inhibition rate was calculated. FDG metabolism was evaluated by micro-PET-CT before and after treatment. The expressions of VEGF, CD31 and Ki-67 were detected by immunohistochemistry (IHC).
RESULTSThe tumor growth delay was >12 days, and the tumor inhibition rate was >45% in the recombinant baculovirus combined with radiotherapy groups, significantly higher than that of the radiotherapy alone group (P < 0.05). Immunohistochemical analysis showed that the expressions of VEGF, CD31 and Ki-67 were significantly lower than that in other groups (P < 0.05). The micro-PET-CT assessment showed that the FDG-metabolism in the recombinant baculovirus combined with radiotherapy groups was significantly reduced (P < 0.05), and the SUVmax (FDG metabolism) of transplanted tumors after treatment was also markedly decreased in comparison with that of the control group. The tumor volume after treatment was significantly correlated with SUVmax in the recombinant baculovirus intratumoral injection + radiotherapy group(r = 0.976), recombinant baculovirus intravenous injection + radiotherapy group (r = 0.954), recombinant baculovirus intramuscular injection + radiotherapy group (r = 0.929), and radiotherapy alone group (r = 0.871, P < 0.05).
CONCLUSIONSThe recombinant baculovirus containing Egr1 promoter and K5 gene combined with radiotherapy enhances the suppressing effect on the growth of lung adenocarcinoma in the tumor-bearing nude mice. The inducibility of Egr1 promoter by radiation allows the targeting and controllability of treatment. Micro-PET-CT results have a good correlation with the treatment effectiveness. Therefore, it can be used in real-time evaluation of tumor metabolic function in vivo.
Adenocarcinoma ; metabolism ; pathology ; radiotherapy ; Animals ; Baculoviridae ; genetics ; Cell Line, Tumor ; Combined Modality Therapy ; Early Growth Response Protein 1 ; genetics ; physiology ; Fluorodeoxyglucose F18 ; Genetic Therapy ; Genetic Vectors ; Humans ; Ki-67 Antigen ; metabolism ; Lung Neoplasms ; metabolism ; pathology ; radiotherapy ; Male ; Mice, Inbred BALB C ; Mice, Nude ; Molecular Targeted Therapy ; Neoplasm Transplantation ; Peptide Fragments ; genetics ; physiology ; Plasminogen ; genetics ; physiology ; Platelet Endothelial Cell Adhesion Molecule-1 ; metabolism ; Positron-Emission Tomography ; Promoter Regions, Genetic ; Random Allocation ; Recombinant Proteins ; genetics ; Tomography, X-Ray Computed ; Tumor Burden ; Vascular Endothelial Growth Factor A ; metabolism
10.Comparison of the expression profiles of cell death factors in articular cartilage between Kashin-Beck disease and osteoarthritis.
Shixun WU ; Xiong GUO ; Feng ZHANG ; Jingjing ZHENG ; Zengtie ZHANG
Journal of Southern Medical University 2014;34(12):1785-1789
OBJECTIVETo compare the expressions of programmed cell death 5 (PDCD5) and early growth response protein-1 (EGR-1) in the articular cartilage between Kashin-Beck disease (KBD) and primary osteoarthritis and the roles of these factors in KBD cartilage.
METHODSCartilage specimens were collected from 10 confirmed KBD patients, 15 osteoarthritic patients and 6 healthy subjects. The expression levels of PDCD5 and EGR-1 in the cartilage were detected by immunohistochemistry staining, and the positive chondrocyte counts were recorded in the different layers of KBD and OA cartilages.
RESULTSThe KBD cartilages contained a significantly higher percentage of PDCD5-positive chondrocytes in the middle layer [(41.35 ± 2.97)%] than OA cartilages [(26.48 ± 2.04)%, P=0.001] and normal cartilages [(19.02 ± 1.88)%, P=0.000] with also obvious PDCD5 over-expression in the deeper layer compared to OA (P=0.000) and normal cartilages (P=0.029), but PDCD5 expression in the superficial layer of the cartilages showed no significant difference among the 3 groups(P>0.05). The average EGR-1 positivity rate in the superficial layer of the cartilage was significantly higher in KBD patients than in OA patients (P=0.000) and healthy controls (P=0.000), but in the middle layer, its positivity rate in KBD patients was higher than that in the normal control (P=0.017) but lower than that of OA cartilage (P=0.002); EGR-1 expression in the deeper layer was comparable in KBD and OA cartilages but both was higher than that in normal cartilages. PDCD5 and EGR-1 expressions were not correlated in either KBD or normal cartilages, but were positively correlated in the superficial layer of OA cartilages.
CONCLUSIONSKBD cartilages show a significantly increased PDCD5 expression in the deeper layer and enhanced EGR-1 expression in both superficial and deeper layers, suggesting the involvement of PDCD5 and EGR-1 in the pathogenesis of KBD.
Apoptosis ; Apoptosis Regulatory Proteins ; metabolism ; Cartilage, Articular ; metabolism ; pathology ; Chondrocytes ; metabolism ; Early Growth Response Protein 1 ; metabolism ; Humans ; Immunohistochemistry ; Kashin-Beck Disease ; metabolism ; Neoplasm Proteins ; metabolism ; Osteoarthritis ; metabolism ; Transcriptome

Result Analysis
Print
Save
E-mail