1.Omics for deciphering oral microecology.
Yongwang LIN ; Xiaoyue LIANG ; Zhengyi LI ; Tao GONG ; Biao REN ; Yuqing LI ; Xian PENG
International Journal of Oral Science 2024;16(1):2-2
The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
Humans
;
Phylogeny
;
Biomimetics
;
Dysbiosis
;
Homeostasis
;
Mass Spectrometry
2.Rice bran oil supplementation protects swine weanlings against diarrhea and lipopolysaccharide challenge.
Juncheng HUANG ; Wenxia QIN ; Baoyang XU ; Haihui SUN ; Fanghua JING ; Yunzheng XU ; Jianan ZHAO ; Yuwen CHEN ; Libao MA ; Xianghua YAN
Journal of Zhejiang University. Science. B 2023;24(5):430-441
Early weaned piglets suffer from oxidative stress and enteral infection, which usually results in gut microbial dysbiosis, serve diarrhea, and even death. Rice bran oil (RBO), a polyphenol-enriched by-product of rice processing, has been shown to have antioxidant and anti-inflammatory properties both in vivo and in vitro. Here, we ascertained the proper RBO supplementation level, and subsequently determined its effects on lipopolysaccharide (LPS)-induced intestinal dysfunction in weaned piglets. A total of 168 piglets were randomly allocated into four groups of seven replicates (42 piglets each group, (21±1) d of age, body weight (7.60±0.04) kg, and half males and half females) and were given basal diet (Ctrl) or basal diet supplemented with 0.01% (mass fraction) RBO (RBO1), 0.02% RBO (RBO2), or 0.03% RBO (RBO3) for 21 d. Then, seven piglets from the Ctrl and the RBO were treated with LPS (100 μg/kg body weight (BW)) as LPS group and RBO+LPS group, respectively. Meanwhile, seven piglets from the Ctrl were treated with the saline vehicle (Ctrl group). Four hours later, all treated piglets were sacrificed for taking samples of plasma, jejunum tissues, and feces. The results showed that 0.02% was the optimal dose of dietary RBO supplementation based on diarrhea, average daily gain, and average daily feed intake indices in early weaning piglets. Furthermore, RBO protected piglets against LPS-induced jejunal epithelium damage, which was indicated by the increases in villus height, villus height/crypt depth ratio, and Claudin-1 levels, as well as a decreased level of jejunal epithelium apoptosis. RBO also improved the antioxidant ability of LPS-challenged piglets, which was indicated by the elevated concentrations of catalase and superoxide dismutase, and increased total antioxidant capacity, as well as the decreased concentrations of diamine oxidase and malondialdehyde in plasma. Meanwhile, RBO improved the immune function of LPS-challenged weaned piglets, which was indicated by elevated immunoglobulin A (IgA), IgM, β-defensin-1, and lysozyme levels in the plasma. In addition, RBO supplementation improved the LPS challenge-induced dysbiosis of gut microbiota. Particularly, the indices of antioxidant capacity, intestinal damage, and immunity were significantly associated with the RBO-regulated gut microbiota. These findings suggested that 0.02% RBO is a suitable dose to protect against LPS-induced intestinal damage, oxidative stress, and jejunal microbiota dysbiosis in early weaned piglets.
Male
;
Female
;
Swine
;
Animals
;
Lipopolysaccharides/toxicity*
;
Antioxidants/pharmacology*
;
Rice Bran Oil
;
Dysbiosis
;
Dietary Supplements
;
Diarrhea/veterinary*
;
Weaning
;
Body Weight
3.Systemic antibiotics increase microbiota pathogenicity and oral bone loss.
Xulei YUAN ; Fuyuan ZHOU ; He WANG ; Xinxin XU ; Shihan XU ; Chuangwei ZHANG ; Yanan ZHANG ; Miao LU ; Yang ZHANG ; Mengjiao ZHOU ; Han LI ; Ximu ZHANG ; Tingwei ZHANG ; Jinlin SONG
International Journal of Oral Science 2023;15(1):4-4
Periodontitis is the most widespread oral disease and is closely related to the oral microbiota. The oral microbiota is adversely affected by some pharmacologic treatments. Systemic antibiotics are widely used for infectious diseases but can lead to gut dysbiosis, causing negative effects on the human body. Whether systemic antibiotic-induced gut dysbiosis can affect the oral microbiota or even periodontitis has not yet been addressed. In this research, mice were exposed to drinking water containing a cocktail of four antibiotics to explore how systemic antibiotics affect microbiota pathogenicity and oral bone loss. The results demonstrated, for the first time, that gut dysbiosis caused by long-term use of antibiotics can disturb the oral microbiota and aggravate periodontitis. Moreover, the expression of cytokines related to Th17 was increased while transcription factors and cytokines related to Treg were decreased in the periodontal tissue. Fecal microbiota transplantation with normal mice feces restored the gut microbiota and barrier, decreased the pathogenicity of the oral microbiota, reversed the Th17/Treg imbalance in periodontal tissue, and alleviated alveolar bone loss. This study highlights the potential adverse effects of long-term systemic antibiotics-induced gut dysbiosis on the oral microbiota and periodontitis. A Th17/Treg imbalance might be related to this relationship. Importantly, these results reveal that the periodontal condition of patients should be assessed regularly when using systemic antibiotics in clinical practice.
Humans
;
Mice
;
Animals
;
Dysbiosis
;
Anti-Bacterial Agents/pharmacology*
;
Virulence
;
Microbiota
;
Periodontitis/chemically induced*
;
Cytokines
4.Metformin may be a viable adjunctive therapeutic option to potentially enhance immune reconstitution in HIV-positive immunological non-responders.
Silvere D ZAONGO ; Yaokai CHEN
Chinese Medical Journal 2023;136(18):2147-2155
Incomplete immune reconstitution remains a global challenge for human immunodeficiency virus (HIV) treatment in the present era of potent antiretroviral therapy (ART), especially for those individuals referred to as immunological non-responders (INRs), who exhibit dramatically low CD4 + T-cell counts despite the use of effective antiretroviral therapy, with long-term inhibition of viral replication. In this review, we provide a critical overview of the concept of ART-treated HIV-positive immunological non-response, and also explain the known mechanisms which could potentially account for the emergence of immunological non-response in some HIV-infected individuals treated with appropriate and effective ART. We found that immune cell exhaustion, combined with chronic inflammation and the HIV-associated dysbiosis syndrome, may represent strategic aspects of the immune response that may be fundamental to incomplete immune recovery. Interestingly, we noted from the literature that metformin exhibits properties and characteristics that may potentially be useful to specifically target immune cell exhaustion, chronic inflammation, and HIV-associated gut dysbiosis syndrome, mechanisms which are now recognized for their critically important complicity in HIV disease-related incomplete immune recovery. In light of evidence discussed in this review, it can be seen that metformin may be of particularly favorable use if utilized as adjunctive treatment in INRs to potentially enhance immune reconstitution. The approach described herein may represent a promising area of therapeutic intervention, aiding in significantly reducing the risk of HIV disease progression and mortality in a particularly vulnerable subgroup of HIV-positive individuals.
Humans
;
Immune Reconstitution
;
CD4 Lymphocyte Count
;
Metformin/therapeutic use*
;
Dysbiosis
;
Antiretroviral Therapy, Highly Active
;
HIV Infections/drug therapy*
;
CD4-Positive T-Lymphocytes
;
HIV
;
Syndrome
5.Gut microbial dysbiosis under space environment: a review.
Hanwen ZHANG ; Xiuyun LIU ; Ruipeng WU ; Yujuan LI
Chinese Journal of Biotechnology 2023;39(10):4075-4084
Unique factors in the space environment can cause dysbiosis of astronauts' gut microbiota and its metabolites, which may exert systematic physiological effects on human body. Recent progress regarding the effect of space flight/simulated space environment (SF/SPE) on the composition of gut microbiota and its metabolites was reviewed in this paper. SF/SPE may cause the increase of invasive pathogenic bacteria and the decrease of beneficial bacteria, aggravating intestinal inflammation and increasing intestinal permeability. SF/SPE may also cause the decrease of beneficial metabolites or the increase of harmful metabolites of gut microbiota, leading to metabolism disorder in vivo, or inducing damage of other systems, thus not beneficial to the health and working efficiency of astronauts. Summarizing the effects of SF/SPE on gut microbiota may provide scientific basis for further researches in this field and the on-orbit health protection of astronauts.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Dysbiosis/microbiology*
;
Bacteria/metabolism*
6.Encyclopedia of fecal microbiota transplantation: a review of effectiveness in the treatment of 85 diseases.
Yun WANG ; Sheng ZHANG ; Thomas J BORODY ; Faming ZHANG
Chinese Medical Journal 2022;135(16):1927-1939
Fecal microbiota transplantation (FMT) has been used as a core therapy for treating dysbiosis-related diseases by remodeling gut microbiota. The methodology and technology for improving FMT are stepping forward, mainly including washed microbiota transplantation (WMT), colonic transendoscopic enteral tubing (TET) for microbiota delivery, and purified Firmicutes spores from fecal matter. To improve the understanding of the clinical applications of FMT, we performed a systematic literature review on FMT published from 2011 to 2021. Here, we provided an overview of the reported clinical benefits of FMT, the methodology of processing FMT, the strategy of using FMT, and the regulations on FMT from a global perspective. A total of 782 studies were included for the final analysis. The present review profiled the effectiveness from all clinical FMT uses in 85 specific diseases as eight categories, including infections, gut diseases, microbiota-gut-liver axis, microbiota-gut-brain axis, metabolic diseases, oncology, hematological diseases, and other diseases. Although many further controlled trials will be needed, the dramatic increasing reports have shown the promising future of FMT for dysbiosis-related diseases in the gut or beyond the gut.
Humans
;
Fecal Microbiota Transplantation/methods*
;
Dysbiosis/therapy*
;
Gastrointestinal Microbiome
;
Feces
;
Microbiota
7.Features of gut microbiota in patients with anorexia nervosa.
Runxue YUAN ; Lei YANG ; Gaiqi YAO ; Shuxia GENG ; Qinggang GE ; Shining BO ; Xueni LI
Chinese Medical Journal 2022;135(16):1993-2002
BACKGROUND:
Anorexia nervosa (AN) is a psychological disorder, which is characterized by the misunderstanding of body image, food restriction, and low body weight. An increasing number of studies have reported that the pathophysiological mechanism of AN might be associated with the dysbiosis of gut microbiota. The purpose of our study was to explore the features of gut microbiota in patients with AN, hoping to provide valuable information on its pathogenesis and treatment.
METHODS:
In this cross-sectional study, from August 2020 to June 2021, patients with AN who were admitted into Peking University Third Hospital and Peking University Sixth Hospital ( n = 30) were recruited as the AN group, and healthy controls (HC) were recruited from a middle school and a university in Beijing ( n = 30). Demographic data, Hamilton Depression Scale (HAMD) scores of the two groups, and length of stay of the AN group were recorded. Microbial diversity analysis of gut microbiota in stool samples from the two groups was analyzed by 16S ribosomal RNA (rRNA) gene sequencing.
RESULTS:
The weight (AN vs. HC, [39.31 ± 7.90] kg vs. [56.47 ± 8.88] kg, P < 0.001) and body mass index (BMI, AN vs. HC, [14.92 ± 2.54] kg/m 2vs. [20.89 ± 2.14] kg/m 2 , P < 0.001) of patients with AN were statistically significantly lower than those of HC, and HAMD scores in AN group were statistically significantly higher than those of HC. For alpha diversity, there were no statistically significant differences between the two groups; for beta diversity, the two groups differed obviously regarding community composition. Compared to HC, the proportion of Lachnospiraceae in patients with AN was statistically significantly higher (AN vs. HC, 40.50% vs. 31.21%, Z = -1.981, P = 0.048), while that of Ruminococcaceae was lower (AN vs. HC, 12.17% vs. 19.15%, Z = -2.728, P = 0.007); the proportion of Faecalibacterium (AN vs. HC, 3.97% vs. 9.40%, Z = -3.638, P < 0.001) and Subdoligranulum (AN vs. HC, 4.60% vs. 7.02%, Z = -2.369, P = 0.018) were statistically significantly lower, while that of Eubacterium_hallii_group was significantly higher (AN vs. HC, 7.63% vs. 3.43%, Z = -2.115, P = 0.035). Linear discriminant effect (LEfSe) analysis (LDA score >3.5) showed that o_Lachnospirales, f_Lachnospiraceae, and g_Eubacterium_hallii_group (o, f and g represents order, family and genus respectively) were enriched in patients with AN. Microbial function of nutrient transport and metabolism in AN group were more abundant ( P > 0.05). In AN group, weight and BMI were significantly negatively correlated with the abundance of Bacteroidota and Bacteroides , while positively correlated with Subdoligranulum . BMI was significantly positively correlated with Firmicutes; HAMD scores were significantly negatively correlated with Faecalibacterium.
CONCLUSIONS
The composition of gut microbiota in patients with AN was different from that of healthy people. Clinical indicators have correlations with the abundance of gut microbiota in patients with AN.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Anorexia Nervosa
;
Cross-Sectional Studies
;
Dysbiosis/microbiology*
;
Body Mass Index
;
RNA, Ribosomal, 16S/genetics*
;
Feces/microbiology*
8.Chinese medicinal formulae treat inflammatory bowel diseases through maintaining gut flora homeostasis.
China Journal of Chinese Materia Medica 2022;47(22):5997-6004
Inflammatory bowel disease(IBD) is a chronic and recurrent inflammatory disorder of the gut, including Crohn's disease(CD) and ulcerative colitis(UC). The occurrence and development of IBD involves multiple pathogenic factors, and the dybiosis of gut flora is recognized as an important pathogenic mechanism of IBD. Therefore, restoring and maintaining the balance of gut flora including bacteria and fungi has become an effective option for IBD treatment. Based on the theoretical basis of the interaction between gut flora and IBD, this paper followed the principle of clinical syndrome differentiation for IBD therapy by traditional Chinese medicine(TCM), and summarized several Chinese medicinal formulae commonly used in IBD patients with large intestine damp-heat syndrome, intermingled heat and cold syndrome, spleen deficiency and dampness accumulation syndrome, spleen and kidney yang deficiency syndrome, liver stagnation and spleen deficiency syndrome, and severe heat poisoning syndrome. The therapeutic and regulatory effects of Shaoyao Decoction, Qingchang Suppository, Wumei Pills, Banxia Xiexin Decoction, Shenling Baizhu Powder, Lizhong Decoction, Sishen Pills, Tongxie Yaofang, Baitouweng Decoction, Gegen Qinlian Decoction, and Houttuyniae Herba prescriptions on gut flora of IBD patients were emphasized as well as the mechanisms. This study found that Chinese medicinal formulae increased the abundance of Bacteroidetes, Bifidobacteria, Lactobacillus, and other beneficial bacteria producing short-chain fatty acids, and reduced the abundance of Enterobacteriaceae and other harmful bacteria to restore the balance of gut flora, thus treating IBD. Confronting the recalcitrance and high recurrence of IBD, Chinese medicinal formulae provide new opportunities for IBD treatment through intervening dysbiosis of gut flora.
Humans
;
Gastrointestinal Microbiome
;
Inflammatory Bowel Diseases/drug therapy*
;
Dysbiosis/drug therapy*
;
Colitis, Ulcerative/drug therapy*
;
Bacteria/genetics*
;
Homeostasis
;
China
9.The role of gut microbiota dysbiosis in the occurrence and development of inflammatory bowel disease and its prevention and control strategies.
Chinese Journal of Preventive Medicine 2022;56(9):1175-1181
The occurrence of inflammatory bowel disease (IBD) is related to environmental factors, host immune status, genetic susceptibility and flora imbalance. With the development of sequencing technologies, the relationship between intestinal microbiota and IBD has been further studied and confirmed in many aspects. This article summarizes the characteristics of microbiota alterations in patients with IBD, as well as the role and mechanisms of microbiota dysbiosis in the onset and development of IBD, and discusses the research status of therapies based on intestinal microbiota, prospecting the future of intestinal flora in the prevention, diagnosis, treatment and prognosis of IBD.
Dysbiosis/therapy*
;
Gastrointestinal Microbiome
;
Humans
;
Inflammatory Bowel Diseases/prevention & control*
;
Microbiota
10.Oyster Protein Hydrolysate Alleviates Cadmium Toxicity by Restoring Cadmium-Induced Intestinal Damage and Gut Microbiota Dysbiosis in Mice via Its Abundance of Methionine, Tyrosine, and Glutamine.
Jing Wen WANG ; Zhi Jia FANG ; Yong Bin LI ; Lin Ru HUANG ; Li Jun SUN ; Ying LIU ; Ya Ling WANG ; Jian Meng LIAO
Biomedical and Environmental Sciences 2022;35(7):669-673

Result Analysis
Print
Save
E-mail