1.Porphyromonas gingivalis-induced glucose intolerance during periapical lesions requires its LPS throught a Th17 immune response.
Sylvie LÊ ; Emma STURARO ; Charlotte THOMAS ; Thibault CANCEILL ; Bertrand EKAMBI ; Nawel FELLOUAH ; Claude KNAUF ; Anne ABOT ; Christophe TENAILLEAU ; Benjamin DUPLOYER ; Pascale LOUBIERES ; Alison PROSPER ; Swann DIEMER ; Rémy BURCELIN ; Franck DIEMER ; Matthieu MINTY ; Vincent BLASCO-BAQUE
International Journal of Oral Science 2025;17(1):69-69
This study investigates the role of Interleukin 17 (IL-17) in exacerbating periapical lesions caused by Porphyromonas gingivalis (Pg) lipopolysaccharides (LPS) in the context of metabolic disease and its potential impact on glucose tolerance. Researchers developed a unique mouse model where mice were monocolonized with Pg to induce periapical lesions. After 1 month, they were fed a high-fat diet (HFD) for 2 months to simulate metabolic disease and oral microbiota dysbiosis. To explore the role of LPS from Pg, wild-type (WT) mice were challenged with purified LPS from Porphyromonas gingivalis, as well as with LPS-depleted and non-depleted Pg bacteria; IL-17 knockout (KO) mice were also included to assess the role of IL-17 signaling. The impact on bone lysis, periapical injury, glucose intolerance, and immune response was assessed. Results showed that in WT mice, the presence of LPS significantly worsened bone lysis, Th17 cell recruitment, and periapical injury. IL-17 KO mice exhibited reduced bone loss, glucose intolerance, and immune cell infiltration. Additionally, inflammatory markers in adipose tissue were lower in IL-17 KO mice, despite increased dysbiosis. The findings suggest that IL-17 plays a critical role in amplifying Pg-induced periapical lesions and systemic metabolic disturbances. Targeting IL-17 recruitment could offer a novel approach to improving glycemic control and reducing type 2 diabetes (T2D) risk in individuals with periapical disease.
Animals
;
Porphyromonas gingivalis/immunology*
;
Th17 Cells/immunology*
;
Lipopolysaccharides/immunology*
;
Mice
;
Glucose Intolerance/microbiology*
;
Interleukin-17/metabolism*
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Diet, High-Fat
;
Periapical Diseases/microbiology*
;
Male
;
Dysbiosis
2.Progress of research on the gut microbiome and its metabolite short-chain fatty acids in postmenopausal osteoporosis: a literature review.
Yao CHEN ; Ying XIE ; Xijie YU
Frontiers of Medicine 2025;19(3):474-492
Postmenopausal osteoporosis (PMOP) is a systemic metabolic bone disease caused by the decrease in estrogen levels after menopause. It leads to bone loss, microstructural damage, and an increased risk of fractures. Studies have found that the gut microbiota and its metabolites can regulate bone metabolism through the gut-bone axis and the gut-brain axis. As research progresses, PMOP has been found to be associated with gut microbiota dysbiosis and Th17/Treg imbalance. The gut microbiota is closely related to the development and differentiation of Treg and Th17 cells. Among them, the metabolites of the gut microbiota such as short-chain fatty acids (SCFAs) can regulate the differentiation of effector T cells by acting on molecular receptors on immune cells, thereby regulating the bone immune process. The multifaceted relationship among the gut microbiota, SCFAs, Th17/Treg cell-mediated bone immunity, and bone metabolism is eliciting attention from researchers. Through a review of existing literature, we have comprehensively summarized the effects of the gut microbiota and SCFAs on PMOP, especially from the perspective of Th17/Treg balance. Regulating this balance may provide new opportunities for PMOP treatment.
Humans
;
Gastrointestinal Microbiome/immunology*
;
Fatty Acids, Volatile/metabolism*
;
Osteoporosis, Postmenopausal/immunology*
;
Female
;
T-Lymphocytes, Regulatory/metabolism*
;
Th17 Cells/metabolism*
;
Dysbiosis/immunology*
;
Bone and Bones/metabolism*
3.Interpretation of the hygiene and microflora hypothesis for allergic diseases through epigenetic epidemiology.
Epidemiology and Health 2018;40(1):e2018006-
The hygiene hypothesis (HH) proposed by Strachan in 1989 was expanded to explain the inverse association between the occurrence of allergy disorders and the risk of infectious diseases and parasite infestation. The microflora hypothesis (MH) suggests that gut microbial dysbiosis in early life might trigger hypersensitivity disorders. The sharing concept of both HH and MH is gene-environment interaction, which is also a key concept in epigenetics. The amalgamation of epidemiology and epigenetics has created a scientific discipline termed epigenetic epidemiology. To accomplish an era of gene-environment-wide interaction studies, it is necessary to launch a national human epigenome project.
Allergy and Immunology
;
Communicable Diseases
;
Dysbiosis
;
Epidemiology*
;
Epigenomics*
;
Gastrointestinal Microbiome
;
Gene-Environment Interaction
;
Humans
;
Hygiene Hypothesis
;
Hygiene*
;
Hypersensitivity
;
Parasites
4.Interpretation of the hygiene and microflora hypothesis for allergic diseases through epigenetic epidemiology
Epidemiology and Health 2018;40(1):2018006-
The hygiene hypothesis (HH) proposed by Strachan in 1989 was expanded to explain the inverse association between the occurrence of allergy disorders and the risk of infectious diseases and parasite infestation. The microflora hypothesis (MH) suggests that gut microbial dysbiosis in early life might trigger hypersensitivity disorders. The sharing concept of both HH and MH is gene-environment interaction, which is also a key concept in epigenetics. The amalgamation of epidemiology and epigenetics has created a scientific discipline termed epigenetic epidemiology. To accomplish an era of gene-environment-wide interaction studies, it is necessary to launch a national human epigenome project.
Allergy and Immunology
;
Communicable Diseases
;
Dysbiosis
;
Epidemiology
;
Epigenomics
;
Gastrointestinal Microbiome
;
Gene-Environment Interaction
;
Humans
;
Hygiene Hypothesis
;
Hygiene
;
Hypersensitivity
;
Parasites
5.The Microbiome and Mental Health: Looking Back, Moving Forward with Lessons from Allergic Diseases.
Alan C LOGAN ; Felice N JACKA ; Jeffrey M CRAIG ; Susan L PRESCOTT
Clinical Psychopharmacology and Neuroscience 2016;14(2):131-147
Relationships between gastrointestinal viscera and human emotions have been documented by virtually all medical traditions known to date. The focus on this relationship has waxed and waned through the centuries, with noted surges in interest driven by cultural forces. Here we explore some of this history and the emerging trends in experimental and clinical research. In particular, we pay specific attention to how the hygiene hypothesis and emerging research on traditional dietary patterns has helped re-ignite interest in the use of microbes to support mental health. At present, the application of microbes and their structural parts as a means to positively influence mental health is an area filled with promise. However, there are many limitations within this new paradigm shift in neuropsychiatry. Impediments that could block translation of encouraging experimental studies include environmental forces that work toward dysbiosis, perhaps none more important than westernized dietary patterns. On the other hand, it is likely that specific dietary choices may amplify the value of future microbial-based therapeutics. Pre-clinical and clinical research involving microbiota and allergic disorders has predated recent work in psychiatry, an early start that provides valuable lessons. The microbiome is intimately connected to diet, nutrition, and other lifestyle variables; microbial-based psychopharmacology will need to consider this contextual application, otherwise the ceiling of clinical expectations will likely need to be lowered.
Allergy and Immunology
;
Anxiety
;
Depression
;
Diet
;
Dysbiosis
;
Hand
;
Humans
;
Hygiene Hypothesis
;
Life Style
;
Mental Health*
;
Microbiota*
;
Neuropsychiatry
;
Psychopharmacology
;
Viscera
;
Child Health

Result Analysis
Print
Save
E-mail