1.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
2.Mechanism of vanillic acid against cardiac fibrosis induced by isoproterenol in mice based on Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways.
Hai-Bo HE ; Mian WU ; Jie XU ; Qian-Qian XU ; Fang-Zhu WAN ; Hua-Qiao ZHONG ; Ji-Hong ZHANG ; Gang ZHOU ; Hui-Lin QIN ; Hao-Ran LI ; Hai-Ming TANG
China Journal of Chinese Materia Medica 2025;50(8):2193-2208
This study investigated the effects and underlying mechanisms of vanillic acid(VA) against cardiac fibrosis(CF) induced by isoproterenol(ISO) in mice. Male C57BL/6J mice were randomly divided into control group, VA group(100 mg·kg~(-1), ig), ISO group(10 mg·kg~(-1), sc), ISO + VA group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig), ISO + dynamin-related protein 1(Drp1) inhibitor(Mdivi-1) group(10 mg·kg~(-1), sc + 50 mg·kg~(-1), ip), and ISO + VA + Mdivi-1 group(10 mg·kg~(-1), sc + 100 mg·kg~(-1), ig + 50 mg·kg~(-1), ip). The treatment groups received the corresponding medications once daily for 14 consecutive days. On the day after the last administration, cardiac functions were evaluated, and serum and cardiac tissue samples were collected. These samples were analyzed for serum aspartate aminotransferase(AST), lactate dehydrogenase(LDH), creatine kinase-MB(CK-MB), cardiac troponin I(cTnI), reactive oxygen species(ROS), interleukin(IL)-1β, IL-4, IL-6, IL-10, IL-18, and tumor necrosis factor-α(TNF-α) levels, as well as cardiac tissue catalase(CAT), glutathione(GSH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC) activities, and cytochrome C levels in mitochondria and cytoplasm. Hematoxylin-eosin, Masson, uranium acetate and lead citrate staining were used to observe morphological and mitochondrial ultrastructural changes in the cardiac tissues, and myocardial injury area and collagen volume fraction were calculated. Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. The mRNA expression levels of macrophage polarization markers [CD86, CD206, arginase 1(Arg-1), inducible nitric oxide synthase(iNOS)], CF markers [type Ⅰ collagen(Coll Ⅰ), Coll Ⅲ, α-smooth muscle actin(α-SMA)], and cytokines(IL-1β, IL-4, IL-6, IL-10, IL-18, TNF-α) in cardiac tissues were determined by quantitative real-time PCR. Western blot was used to detect the protein expression levels of Coll Ⅰ, Coll Ⅲ, α-SMA, Drp1, p-Drp1, voltage-dependent anion channel(VDAC), hexokinase 1(HK1), NOD-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), caspase-1, cleaved-caspase-1, gasdermin D(GSDMD), cleaved N-terminal gasdermin D(GSDMD-N), IL-1β, IL-18, B-cell lymphoma-2(Bcl-2), B-cell lymphoma-xl(Bcl-xl), Bcl-2-associated death promoter(Bad), Bcl-2-associated X protein(Bax), apoptotic protease activating factor-1(Apaf-1), pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, poly(ADP-ribose) polymerase-1(PARP-1), and cleaved-PARP-1 in cardiac tissues. The results showed that VA significantly improved cardiac function in mice with CF, reduced myocardial injury area and cardiac index, and decreased serum levels of AST, CK-MB, cTnI, LDH, ROS, IL-1β, IL-6, IL-18, and TNF-α. VA also lowered MDA and MPO levels, mRNA expressions of IL-1β, IL-6, IL-18, and TNF-α, and mRNA and protein expressions of Coll Ⅰ, Coll Ⅲ, and α-SMA in cardiac tissues, and increased serum levels of IL-4 and IL-10, cardiac tissue levels of CAT, GSH, SOD, and T-AOC, and mRNA expressions of IL-4 and IL-10. Additionally, VA ameliorated cardiac pathological damage, inhibited myocardial cell apoptosis, inflammatory infiltration, and collagen fiber deposition, reduced collagen volume fraction, and alleviated mitochondrial damage. VA decreased the ratio of F4/80~+CD86~+ M1 cells and the mRNA expressions of CD86 and iNOS in cardiac tissue, and increased the ratio of F4/80~+CD206~+ M2 cells and the mRNA expressions of CD206 and Arg-1. VA also reduced protein expressions of p-Drp1, VDAC, NLRP3, ASC, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-1β, IL-18, Bad, Bax, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP-1, and cytoplasmic cytochrome C, and increased the expressions of HK1, Bcl-2, Bcl-xl, pro-caspase-3, pro-caspase-9 proteins, as well as the Bcl-2/Bax and Bcl-xl/Bad ratios and mitochondrial cytochrome C content. These results indicate that VA has a significant ameliorative effect on ISO-induced CF in mice, alleviates ISO-induced oxidative damage and inflammatory response, and its mechanism may be closely related to the inhibition of Drp1/HK1/NLRP3 and mitochondrial apoptosis signaling pathways, suppression of myocardial cell inflammatory infiltration and collagen fiber deposition, reduction of collagen volume fraction and CollⅠ, Coll Ⅲ, and α-SMA expressions, thus mitigating CF.
Animals
;
Isoproterenol/adverse effects*
;
Male
;
Mice
;
Signal Transduction/drug effects*
;
Vanillic Acid/administration & dosage*
;
Dynamins/genetics*
;
Mice, Inbred C57BL
;
Fibrosis/genetics*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Myocardium/metabolism*
;
Humans
3.Effect of Sailuotong capsule on mitochondrial dynamics in focal cerebral ischemia/reperfusion rats.
Ye-hao ZHANG ; Wei-hong CONG ; Li XU ; Bin YANG ; Ming-jiang YAO ; Wen-ting SONG ; Jian-xun LIU
China Journal of Chinese Materia Medica 2015;40(10):1984-1988
To observe the protective effect and mechanism of Sailuotong capsule in focal cerebral ischemia/reperfusion. The 90 min middle cerebral artery occlusion (MCAO) reperfusion model was established. The expressions of dynamin-related protein 1 ( Drp1) and optic atrophy 1 (Opa1) were tested by Western blot. The transmission electron microscope was used to observe the changes in the mitochondrial ultra-structure. The pathological morphological changes were observed through the HE staining. The immunohistochemical method was used to test Drp1 and Opa1 expressions. Sailuotong capsule (33, 16.5 mg x kg(-1), ig) can inhibit the abnormal mitochondrial fission and fusion in the cortical area on the ischemia side and the mitochondrial fission gene expression and promote the mitochondrial fusion gene Opa1 expression, so as to alleviate the energy metabolism disorder caused by ischemia/reperfusion. Sailuotong capsule can inhibit the abnormal mitochondrial dynamics in peri-ischemic regions and maintain the normal morphology of mitochondria, which may be the mechanism of Sailuotong capsule in promoting the self-recovery function in the ischemic brain region.
Animals
;
Brain
;
drug effects
;
metabolism
;
Brain Ischemia
;
drug therapy
;
genetics
;
metabolism
;
surgery
;
Drugs, Chinese Herbal
;
administration & dosage
;
Dynamins
;
genetics
;
metabolism
;
GTP Phosphohydrolases
;
genetics
;
metabolism
;
Humans
;
Male
;
Mitochondria
;
drug effects
;
metabolism
;
Rats
4.Influence of chronic fluorosis on the expression of mitochondrial fission protein dynamin-related 1 in the cortical neurons of rats.
Di-dong LOU ; Kai-lin ZHANG ; Ji-gang PAN ; Shuang-li QIN ; Yan-fei LIU ; Yan-ni YU ; Zhi-zhong GUAN
Chinese Journal of Preventive Medicine 2013;47(6):561-564
OBJECTIVETo explore the changes of protein expression of mitochondrial fission gene dynamin-related 1(Drp 1) in the cortical neurons of rats with chronic fluorosis.
METHODSA total of 120 one-month-old SD rats (each weighing approximately 100-120 g at the beginning of the experiment) were randomly divided into three groups, and fed with the different doses of fluoride containing in drinking water (untreated control containing 0 mg/L fluoride, and low-fluoride & high-fluoride supplemented with 10 and 50 mg/L fluoride,respectively). After 3 or 6 months exposure, 20 rats from each group were killed. Then the protein expression of mitochondrial fission gene, Drp1, was detected by immunohistochemistry and western-blotting method.
RESULTSDental fluorosis and urinary fluorosis were obviously found in the rats exposed to fluoride. At the experiment period of 3 months, the numbers of positive cells of Drp1 detected by immunohistochemistry changed. Compared with the control group (36.3 ± 5.8), the changes in low-fluoride group (34.7 ± 4.1) showed no significant difference (t = 1.5, P > 0.05),but the increase in high-fluoride group (45.0 ± 4.7) had statistical significance (t = 8.8, P < 0.05). The western-blotting method had consistent results. Compared with the control group (0.59 ± 0.03), a significant increase of the average topical density in low- fluoride (0.62 ± 0.03) and high-fluoride (0.71 ± 0.02) groups were found (t = 0.02,0.11, P < 0.05). At the experiment period of 6 months, the numbers of positive cells of Drp1 detected by immunohistochemistry significantly changed. Compared with the control group (33.2 ± 4.4), the number in low- fluoride and high-fluoride groups were separately (36.6 ± 3.8) and (39.4 ± 4.2),both increased significantly (t = 3.5,6.3, P < 0.05). Same results could be found in western-blotting method,compared with the control group (0.65 ± 0.06), the average topical density in low- fluoride (0.80 ± 0.09) and high-fluoride (0.76 ± 0.08) groups both increased significantly (t = 0.1,0.1, P < 0.05).
CONCLUSIONSTaking excessive amount of fluoride might result in the changes of expression of Drp1, and the neurons damage from the chronic fluorosis might be associated with the hyperfunction of mitochondrial fusion.
Animals ; Drinking Water ; chemistry ; Dynamins ; genetics ; metabolism ; Fluoride Poisoning ; metabolism ; Fluorides ; urine ; Fluorosis, Dental ; metabolism ; Male ; Mitochondrial Dynamics ; Neurons ; metabolism ; pathology ; Rats ; Rats, Sprague-Dawley
5.Dynamin like protein 1 participated in the hemoglobin uptake pathway of Plasmodium falciparum.
Hong-chang ZHOU ; Yu-hui GAO ; Xiang ZHONG ; Heng WANG
Chinese Medical Journal 2009;122(14):1686-1691
BACKGROUNDDuring the blood stage of malaria infection, parasites internalize in the host red blood cells and degrade massive amounts of hemoglobin for their development. Although the morphology of the parasite's hemoglobin uptake pathway has been clearly observed, little has been known about its molecular mechanisms.
METHODSThe recombinant proteins from Plasmodium falciparum, dynamin like protein 1 (PfDYN1) and 2 (PfDYN2) GTPase domain, were expressed in E.coli and showed GTPase activity. By using a dynamin inhibitor, dynasore, we demonstrated the involvement of PfDYN1 in the hemoglobin uptake pathway.
RESULTSThe GTPase activity of the two recombinant proteins was inhibited by dynasore in vitro. Treatment of parasite cultures with 80 micromol/L dynasore at the ring and early trophozoite stage resulted in substantial inhibition of parasite growth and in an obvious decline of hemoglobin quantum. Furthermore, reduced intracellular hemozoin accumulation and decreased uptake of the FITC-dextran were also observed, together with distinctive changes in the ultrastructure of parasites after the dynasore treatment.
CONCLUSIONSOur results show that PfDYN1 plays an important role in the hemoglobin uptake pathway of P. falciparum and suggest its possibility of being a novel target for malaria chemotherapy.
Animals ; Antimalarials ; pharmacology ; Dynamins ; antagonists & inhibitors ; GTP Phosphohydrolases ; genetics ; metabolism ; Hemoglobins ; metabolism ; Hydrazones ; pharmacology ; Malaria, Falciparum ; metabolism ; Microscopy, Electron, Transmission ; Plasmodium falciparum ; drug effects ; metabolism ; ultrastructure ; Protozoan Proteins ; genetics ; metabolism ; Recombinant Proteins ; genetics ; metabolism
6.Molecular cloning of Plasmodium yoelii dynamin-like protein (PyDyn) gene and the immunological character of its domains.
Dong WANG ; Ying-hong MAO ; Heng WANG
Acta Academiae Medicinae Sinicae 2003;25(2):176-180
OBJECTIVETo identify and clone a new full ORF gene of PyDyn (Plasmodium yoelii dynamin-like protein), and examine the protection of their expression products.
METHODUsing the P. yoelii Genome technology and RT-PCR.
RESULTSThe full ORF gene of PyDyn was amplified from mRNA of the erythrocytic stage of P. yoelii., three domains of PyDyn were expressed in E. coli., and the fairly positive immunogenicity of them was showed by IFA. The full ORF gene of PyDyn was 2,433 bp and encode 811 amino acids. Its Gene Bank access number is AF458071. PyDyn belongs to the dynamin-like protein family according to its property.
CONCLUSIONThe new full ORF gene of PyDyn is obtained and identified; their expressed domains are probably new candidates for malaria vaccine.
Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; Dynamins ; genetics ; immunology ; Escherichia coli ; genetics ; Genes, Protozoan ; genetics ; immunology ; Malaria Vaccines ; immunology ; Molecular Sequence Data ; Plasmodium yoelii ; chemistry ; genetics ; Protozoan Proteins ; genetics ; immunology ; Vaccines, Synthetic ; immunology

Result Analysis
Print
Save
E-mail