1.Effect of Shenqi Yiliu Formula (参芪抑瘤方) Drug-Containing Serum on the Cycle of Gastric Cancer Cell AGS and Wnt/β-Catenin Pathway
Na WEI ; Chongyuan GUO ; Min BAI ; Yaorong AN ; Sichao ZHANG ; Liyang WU ; Yongqiang DUAN
Journal of Traditional Chinese Medicine 2025;66(4):399-406
ObjectiveTo investigate the potential mechanism of Shenqi Yiliu Formula (参芪抑瘤方) in treating precancerous lesions of gastric cancer (PLGC) by the Wnt/β-catenin signaling pathway. MethodsThe CCK-8 assay was used to determine the optimal intervention time for Shenqi Yiliu Formula drug-containing serum and the concentration of the Wnt/β-catenin pathway inhibitor XAV939 depends on the survival rate of AGS gastric cancer cell line. AGS cells were divided into the gastric cancer cell group (15% blank serum), inhibitor group (selected concentration of XAV939), high-dose Shenqi Yiliu Formula group (12% Shenqi Yiliu Formula drug-containing serum + 3% blank serum), medium-dose Shenqi Yiliu Formula group (6% Shenqi Yiliu Formula drug-containing serum + 9% blank serum), and low-dose Shenqi Yiliu Formula group (3% Shenqi Yiliu Formula drug-containing serum + 12% blank serum). Each group was tested in triplicate. After culturing for 24 and 48 hours, cell migration and invasion were assessed by scratch assays; after a selected intervention period (48 hours), cell cycle distribution was analyzed using flow cytometry, Ki67 protein levels were detected by immunofluorescence, the protein levels of Wnt, β-catenin, GSK-3β, and intranuclear T-cell specific factor(TCF) were measured by the protein immunoblotting assay, and the mRNA expressions of these above factors were determined by quantitative real-time PCR. ResultsThe optimal intervention time for Shenqi Yiliu Formula drug-containing serum was determined to be 48 hours, and the effective concentration of XAV939 was 20 μmol/L. Compared with the gastric cancer cell group, Shenqi Yiliu Formula at all doses reduced the cell migration rate at 24 and 48 hours (P<0.05), except for the low-dose group at 24 hours. Compared to the low-dose group at corresponding time points, high- and medium-dose Shenqi Yiliu Formula groups showed significantly reduced migration rates, particularly the high-dose group at 48 hours (P<0.05). Compared with the gastric cancer cell group, the high-dose Shenqi Yiliu Formula and inhibitor groups exhibited reduced protein and mRNA levels of Wnt, β-catenin, and TCF, along with reduced Ki67 protein levels and a decreased proportion of cells in the S and G2 phases of the cell cycle, but GSK-3β protein levels, GSK-3β mRNA expression, and the proportion of cells in the G1 phase increased (P<0.05). Compared to the inhibitor group, the high-dose Shenqi Yiliu Formula group showed a decreased proportion of G1-phase cells and an increased proportion of G2-phase cells (P<0.05), although differences in Wnt and β-catenin protein levels and mRNA expressions were not statistically significant (P>0.05). ConclusionShenqi Yiliu Formula drug-containing serum inhibits the migration and invasion of gastric cancer AGS cells and block the cell cycle at G1 phase, and its underlying mechanism may be related to the regulation of the Wnt/β-catenin signaling pathway.
2.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
3.Research progress on the mechanism of action of rosmarinic acid in the prevention of cardiovascular diseases
Ke CAI ; Sheng-ru HUANG ; Fang-fang GAO ; Xiu-juan PENG ; Sheng GUO ; Feng LIU ; Jin-ao DUAN ; Shu-lan SU
Acta Pharmaceutica Sinica 2025;60(1):12-21
With the rapid development of social economy and the continuous improvement of human living standard, the incidence, fatality and recurrence rates of cardiovascular disease (CVD) are increasing year by year, which seriously affects people's life and health. Conventional therapeutic drugs have limited improvement on the disability rate, so the search for new therapeutic drugs and action targets has become one of the hotspots of current research. In recent years, the therapeutic role of the natural compound rosmarinic acid (RA) in CVD has attracted much attention, which is capable of preventing CVD by modulating multiple signalling pathways and exerting physiological activities such as antioxidant, anti-apoptotic, anti-inflammatory, anti-platelet aggregation, as well as anti-coagulation and endothelial function protection. In this paper, the role of RA in the prevention of CVD is systematically sorted out, and its mechanism of action is summarised and analysed, with a view to providing a scientific basis and important support for the in-depth exploration of the prevention value of RA in CVD and its further development as a prevention drug.
4.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
5.Salidroside promotes osteogenic differentiation of MC3T3-E1 cells:an in vitro experiment
Zhaohui LIU ; Xiaoqian HAN ; Xin DUAN ; Pengda GUO ; Yuntao ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(2):231-237
BACKGROUND:Bone defects can directly affect the success rate and long-term stability of dental implants.Studies have shown that salidroside has the ability to promote the proliferation and differentiation of osteoblasts,but less is reported on its pathways related to osteogenic differentiation. OBJECTIVE:To investigate the effects of salidroside on the proliferation and differentiation of MC3T3-E1 cells and the expression of related genes and proteins through in vitro cell experiments. METHODS:Cell counting kit-8 test and alkaline phosphatase test were used to determine the optimal concentration of salidroside(0.5,1,5,10,and 50 μmol/L)in promoting the proliferation and differentiation of MC3T3-E1 cells.There were four groups in the experiment:control group,salidroside group,salidroside+LY294002 group,and LY294002 group,which were cultured with osteogenic induction solution,osteogenic induction solution containing 10 μmol/L salidroside,osteogenic induction solution containing 10 μmol/L salidroside+10 μmol/L LY294002,and osteogenic induction solution containing 10 μmol/L LY294002,respectively.The effects of salidroside and LY294002,an inhibitor of the PI3K/Akt signaling pathway,on the expressions of genes and proteins related to osteogenesis were observed. RESULTS AND CONCLUSION:Cell counting kit-8 assay and alkaline phosphatase assay showed that salidroside promoted the proliferation of MC3T3-E1 cells most significantly at 10 μmol/L.Compared with the control group,salidroside could promote mineralization,promote cell adhesion,reduce cell death,increase mRNA expression of Runx-2,osteocalcin and osteopontin(P<0.01),and increase protein expression of Runx-2 and p-Akt(P<0.01).However,the addition of LY294002 reversed the above results.These findings indicate that salidroside can promote the mineralization of MC3T3-E1 cells and the expression of osteogenesis-related genes and proteins,which may be related to the activation of PI3K/Akt signaling pathway.
6.Application practice and exploration of artificial intelligence technology in entire industrial chain of traditional Chinese medicine resources.
Hao ZHU ; Sheng GUO ; Hui YAN ; Shu-Lan SU ; Jin-Ao DUAN ; Ping XIAO
China Journal of Chinese Materia Medica 2025;50(10):2888-2904
With the growing awareness of public health, the value and importance of traditional Chinese medicine(TCM) resources have become increasingly prominent. Despite the undeniable significance of TCM in medical treatment and healthcare, the protection, development, and utilization of TCM resources still face numerous challenges. Under the traditional model, the development and utilization of TCM resources heavily rely on manual labor and empirical decision-making, which not only leads to inefficiencies and high costs but also causes serious issues such as unstable drug quality and imbalances in market supply and demand. In the current era of rapid advancements in artificial intelligence(AI) and technology, AI has emerged as a new engine to address many challenges and difficulties throughout the entire TCM resource industry chain. By leveraging AI technology, intelligent management, precise production, and optimized utilization of TCM resources can be achieved, thereby improving efficiency, reducing costs, ensuring stable quality, and balancing market supply and demand. This article primarily explores the application of AI technology in the entire TCM resource industry chain from different perspectives and provides an in-depth analysis of the future development of AI in the TCM industry. It holds significant importance and value in promoting the intelligent development of the TCM sector and facilitating the healthy development of the entire TCM resource industry chain.
Artificial Intelligence
;
Medicine, Chinese Traditional/economics*
;
Humans
;
Drugs, Chinese Herbal/economics*
;
Drug Industry
7.Research progress in traditional Chinese medicine treatment of kidney-Yang deficiency syndrome by regulating neuro-endocrine-immune system.
Xiao YANG ; Jia-Geng GUO ; Yu DUAN ; Zhen-Dong QIU ; Min-Qi CHEN ; Wei WEI ; Xiao-Tao HOU ; Er-Wei HAO ; Jia-Gang DENG
China Journal of Chinese Materia Medica 2025;50(15):4153-4165
Kidney-Yang deficiency syndrome is a common geriatric disease that underlies chronic conditions such as diabetic nephropathy, chronic kidney disease, and osteoporosis. As age progresses, the kidney-Yang deficiency syndrome showcases increasingly pronounced manifestations, emerging as a key factor in the comorbidities experienced by elderly patients and affecting their quality of life and overall health status. Traditional Chinese medicine(TCM) has been extensively utilized in the treatment of kidney-Yang deficiency syndrome, with Epimedii Folium, Cinnamomi Cortex, and Lycii Fructus widely used in clinical settings. Despite the complexity of the molecular mechanisms involved in treating kidney-Yang deficiency syndrome, the potential therapeutic value of TCM remains compelling. Delving into the mechanisms of TCM treatment of kidney-Yang deficiency syndrome by regulating the neuro-endocrine-immune system can provide a scientific basis for targeted treatments of this syndrome and lay a foundation for the modernization of TCM. The pathophysiology of kidney-Yang deficiency syndrome involves multiple systems, including the interaction of the neuro-endocrine-immune system, the decline in renal function, the intensification of oxidative stress responses, and energy metabolism disorders. Understanding these mechanisms and their interrelationships can help untangle the etiology of kidney-Yang deficiency syndrome, aiding clinicians in making more precise diagnoses and treatments. Furthermore, the research on the specific applications of TCM in research on these pathological mechanisms can enhance the international recognition and status of TCM, enabling it to exert a greater global influence.
Humans
;
Yang Deficiency/physiopathology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Kidney Diseases/physiopathology*
;
Neurosecretory Systems/physiopathology*
;
Animals
;
Kidney/physiopathology*
;
Endocrine System/physiopathology*
;
Immune System/physiopathology*
8.Phenomics of traditional Chinese medicine 2.0: the integration with digital medicine
Min Xu ; Xinyi Shao ; Donggeng Guo ; Xiaojing Yan ; Lei Wang ; Tao Yang ; Hao LIANG ; Qinghua PENG ; Lingyu Linda Ye ; Haibo Cheng ; Dayue Darrel Duan
Digital Chinese Medicine 2025;8(3):282-299
Abstract
Modern western medicine typically focuses on treating specific symptoms or diseases, and traditional Chinese medicine (TCM) emphasizes the interconnections of the body’s various systems under external environment and takes a holistic approach to preventing and treating diseases. Phenomics was initially introduced to the field of TCM in 2008 as a new discipline that studies the laws of integrated and dynamic changes of human clinical phenomes under the scope of the theories and practices of TCM based on phenomics. While TCM Phenomics 1.0 has initially established a clinical phenomic system centered on Zhenghou (a TCM definition of clinical phenome), bottlenecks remain in data standardization, mechanistic interpretation, and precision intervention. Here, we systematically elaborates on the theoretical foundations, technical pathways, and future challenges of integrating digital medicine with TCM phenomics under the framework of “TCM phenomics 2.0”, which is supported by digital medicine technologies such as artificial intelligence, wearable devices, medical digital twins, and multi-omics integration. This framework aims to construct a closed-loop system of “Zhenghou–Phenome–Mechanism–Intervention” and to enable the digitization, standardization, and precision of disease diagnosis and treatment. The integration of digital medicine and TCM phenomics not only promotes the modernization and scientific transformation of TCM theory and practice but also offers new paradigms for precision medicine. In practice, digital tools facilitate multi-source clinical data acquisition and standardization, while AI and big data algorithms help reveal the correlations between clinical Zhenghou phenomes and molecular mechanisms, thereby improving scientific rigor in diagnosis, efficacy evaluation, and personalized intervention. Nevertheless, challenges persist, including data quality and standardization issues, shortage of interdisciplinary talents, and insufficiency of ethical and legal regulations. Future development requires establishing national data-sharing platforms, strengthening international collaboration, fostering interdisciplinary professionals, and improving ethical and legal frameworks. Ultimately, this approach seeks to build a new disease identification and classification system centered on phenomes and to achieve the inheritance, innovation, and modernization of TCM diagnostic and therapeutic patterns.
9.Guideline for the workflow of clinical comprehensive evaluation of drugs
Zhengxiang LI ; Rong DUAN ; Luwen SHI ; Jinhui TIAN ; Xiaocong ZUO ; Yu ZHANG ; Lingli ZHANG ; Junhua ZHANG ; Hualin ZHENG ; Rongsheng ZHAO ; Wudong GUO ; Liyan MIAO ; Suodi ZHAI
China Pharmacy 2025;36(19):2353-2365
OBJECTIVE To standardize the main processes and related technical links of the clinical comprehensive evaluation of drugs, and provide guidance and reference for improving the quality of comprehensive evaluation evidence and its transformation and application value. METHODS The construction of Guideline for the Workflow of Clinical Comprehensive Evaluation of Drugs was based on the standard guideline formulation method of the World Health Organization (WHO), strictly followed the latest definition of guidelines by the Institute of Medicine of the National Academy of Sciences of the United States, and conformed to the six major areas of the Guideline Research and Evaluation Tool Ⅱ. Delphi method was adopted to construct the research questions; research evidence was established by applying the research methods of evidence-based medicine. The evidence quality classification system of the Chinese Evidence-Based Medicine Center was adopted for evidence classification and evaluation. The recommendation strength was determined by the recommendation strength classification standard formulated by the Oxford University Evidence-Based Medicine Center, and the recommendation opinions were formed through the expert consensus method. RESULTS & CONCLUSIONS The Guideline for the Workflow of Clinical Comprehensive Evaluation of Drugs covers 4 major categories of research questions, including topic selection, evaluation implementation, evidence evaluation, and application and transformation of results. The formulation of this guideline has standardized the technical links of the entire process of clinical comprehensive evaluation of drugs, which can effectively guide the high-quality and high-efficient development of this work, enhance the standardized output and transformation application value of evaluation evidence, and provide high-quality evidence support for the scientific decision-making of health and the rationalization of clinical medication.
10.Clinical course, causes of worsening, and outcomes of severe ischemic stroke: A prospective multicenter cohort study.
Simiao WU ; Yanan WANG ; Ruozhen YUAN ; Meng LIU ; Xing HUA ; Linrui HUANG ; Fuqiang GUO ; Dongdong YANG ; Zuoxiao LI ; Bihua WU ; Chun WANG ; Jingfeng DUAN ; Tianjin LING ; Hao ZHANG ; Shihong ZHANG ; Bo WU ; Cairong ZHU ; Craig S ANDERSON ; Ming LIU
Chinese Medical Journal 2025;138(13):1578-1586
BACKGROUND:
Severe stroke has high rates of mortality and morbidity. This study aimed to investigate the clinical course, causes of worsening, and outcomes of severe ischemic stroke.
METHODS:
This prospective, multicenter cohort study enrolled adult patients admitted ≤30 days after ischemic stroke from nine hospitals in China between September 2017 and December 2019. Severe stroke was defined as a score of ≥15 on the National Institutes of Health Stroke Scale (NIHSS). Clinical worsening was defined as an increase of 4 in the NIHSS score from baseline. Unfavorable functional outcome was defined as a modified Rankin scale score ≥3 at 3 months and 1 year after stroke onset, respectively. We performed Logistic regression to explore baseline features and reperfusion therapies associated with clinical worsening and functional outcomes.
RESULTS:
Among 4201 patients enrolled, 854 patients (20.33%) had severe stroke on admission. Of 3347 patients without severe stroke on admission, 142 (4.24%) patients developed severe stroke in hospital. Of 854 patients with severe stroke on admission, 33.95% (290/854) experienced clinical worsening (median time from stroke onset: 43 h, Q1-Q3: 20-88 h), with brain edema (54.83% [159/290]) as the leading cause; 24.59% (210/854) of these patients died by 30 days, and 81.47% (677/831) and 78.44% (633/807) had unfavorable functional outcomes at 3 months and 1 year respectively. Reperfusion reduced the risk of worsening (adjusted odds ratio [OR]: 0.24, 95% confidence interval [CI]: 0.12-0.49, P <0.01), 30-day death (adjusted OR: 0.22, 95% CI: 0.11-0.41, P <0.01), and unfavorable functional outcomes at 3 months (adjusted OR: 0.24, 95% CI: 0.08-0.68, P <0.01) and 1 year (adjusted OR: 0.17, 95% CI: 0.06-0.50, P <0.01).
CONCLUSIONS:
Approximately one-fifth of patients with ischemic stroke had severe neurological deficits on admission. Clinical worsening mainly occurred in the first 3 to 4 days after stroke onset, with brain edema as the leading cause of worsening. Reperfusion reduced the risk of clinical worsening and improved functional outcomes.
REGISTRATION
ClinicalTrials.gov , NCT03222024.
Humans
;
Male
;
Female
;
Prospective Studies
;
Ischemic Stroke/mortality*
;
Aged
;
Middle Aged
;
Aged, 80 and over
;
Stroke
;
Brain Ischemia

Result Analysis
Print
Save
E-mail