1.High expression of CDKN3 promotes migration and invasion of gastric cancer cells by regulating the p53/NF-κB signaling pathway and inhibiting cell apoptosis.
Yi ZHANG ; Yu SHEN ; Zhiqiang WAN ; Song TAO ; Yakui LIU ; Shuanhu WANG
Journal of Southern Medical University 2025;45(4):853-861
OBJECTIVES:
To investigate the expression of CDKN3 in gastric cancer and its impact on prognosis of gastric cancer patients.
METHODS:
We analyzed CDKN3 expression in clinical specimens from 114 gastric cancer patients and assessed its association with 5-year postoperative survival of the patients. GO and KEGG enrichment analyses were used to predict the biological function and possible mechanism of CDKN3. The effects of lentivirus-mediated CDKN3 knockdown on biological behaviors of gastric cancer cells were evaluated using Transwell assay, CCK-8 assay, TUNEL staining, flow cytometry, and Western blotting.
RESULTS:
CDKN3 expression was significantly higher in gastric cancer tissues than in the adjacent tissues with significant correlations with CEA level, CA19-9 level, and T and N staging (P<0.05). High CDKN3 expression was an independent risk factor affecting 5-year postoperative survival of the patients and predictive for long-term prognosis (P<0.01). Enrichment analyses suggested a probable association of CDKN3 with apoptosis. In MGC-803 cells, CDKN3 knockdown significantly lowered migration and invasion capacities of the cells, while CDKN3 overexpression produced the opposite effects. TUNEL staining revealed a significantly lower level of cell apoptosis in gastric cancer tissues than in adjacent tissues (P<0.01). CDKN3 knockdown obviously inhibited proliferation and increased apoptosis of MGC-803 cells. CDKN3 overexpression down-regulated the expressions of p53, p21 and Bax and up-regulated the expressions of p-p65 and Bcl-2.
CONCLUSIONS
CDKN3 is highly expressed in gastric cancer tissues and affects patient prognosis. CDKN3 overexpression promotes proliferation, invasion and migration and suppressed apoptosis of gastric cancer cells possibly through the p53/NF-κB signaling pathway.
Humans
;
Stomach Neoplasms/pathology*
;
Apoptosis
;
Signal Transduction
;
Tumor Suppressor Protein p53/metabolism*
;
Cell Movement
;
Cell Line, Tumor
;
NF-kappa B/metabolism*
;
Prognosis
;
Cyclin-Dependent Kinase Inhibitor Proteins/metabolism*
;
Cell Proliferation
;
Neoplasm Invasiveness
;
Male
;
Female
;
Dual-Specificity Phosphatases
2.Mechanism of Shaofu Zhuyu Decoction in treatment of endometriosis-associated dysmenorrhea with syndrome of cold coagulation and blood stasis based on MSK1/2.
Yuan-Huan CHEN ; Hai-Yan MAO ; Quan-Sheng WU ; Xiao-Hua ZHANG ; Jian SHEN ; Peng FENG ; Can-Can HUANG ; Xiu-Jia JI
China Journal of Chinese Materia Medica 2022;47(17):4674-4681
This study aims to decipher the mechanism underlying the effect of Shaofu Zhuyu Decoction on endometriosis(EMT)-associated dysmenorrhea in rats with the syndrome of cold coagulation and blood stasis based on mitogen-and stress-activated protein kinase 1/2(MSK1/2).We employed a random number table to randomly assign SPF female non-pregnant rats into the sham group, and treated the rest rats with autologous transplantation+refrigerator freezing for the modeling of the syndrome of cold coagulation and blood stasis.The modeled rats were then randomly assigned into the control group and high-, medium-and low-dose Shaofu Zhuyu Decoction groups.The rats in the low-, medium-, and high-dose decoction groups were respectively administrated with 9, 4.5, and 2.3 g·kg~(-1) decoction through gavage once a day for 2 consecutive weeks, and those in the control group were administrated with 0.24 mg·kg~(-1) gestrinone through gavage once every 3 days for 2 weeks.After that, the size of ectopic focus in each rat was measured via laparotomy.Enzyme-linked immunosorbent assay(ELISA) was adopted to determine the expression of interleukin(IL)-6, IL-10, prostaglandin E2(PGE2), tumor necrosis factor-α(TNF-α).Western blot was employed to determine the protein levels of MSK1/2 and dual-specificity phosphatase 1(DUSP1) and real-time quantitative polymerase chain reaction(RT-PCR) to determine the mRNA levels of the two genes in rat eutopic endometrial tissue.Compared with the sham group, the model group showed increased levels of IL-6, PGE2, and TNF-α while decrease level of IL-10 in the serum(P<0.01).Compared with the model group, the high-and medium-dose decoction groups and the gestrinone group had declined levels of IL-6, PGE2, and TNF-α while risen level of IL-10 in the serum(P<0.01).The model group had lower protein levels and mRNA levels of MSK1/2 and DUSP1 in the eutopic endometrial tissue than the sham group(P<0.01). The high-and medium-dose decoction groups and the gestrinone group had higher protein and mRNA levels of MSK1/2 and DUSP1 in the eutopic endometrial tissue than the model group(P<0.01).The results indicated that Shaofu Zhuyu Decoction can regulate the abnormal expression of pro-inflammatory cytokines TNF-α, IL-6, and PGE2 and anti-inflammatory cytokines IL-10 and DUSP1 via MSK1/2 to alleviate EMT-associated dysmenorrhea in rats with the syndrome of cold coagulation and blood stasis.
Animals
;
Female
;
Rats
;
Anti-Inflammatory Agents/therapeutic use*
;
Cytokines
;
Dinoprostone
;
Drugs, Chinese Herbal/therapeutic use*
;
Dual-Specificity Phosphatases
;
Dysmenorrhea/genetics*
;
Endometriosis/genetics*
;
Gestrinone/therapeutic use*
;
Interleukin-10
;
Interleukin-6
;
Mitogen-Activated Protein Kinase 8/therapeutic use*
;
Mitogens/therapeutic use*
;
RNA, Messenger
;
Tumor Necrosis Factor-alpha/metabolism*
3.Association of DUSP9 gene polymorphisms with gestational diabetes mellitus.
Xuexin WANG ; Li ZHANG ; Guojin OU ; Qiang WEI ; Lin WU ; Qiang CHEN
Chinese Journal of Medical Genetics 2019;36(3):267-270
OBJECTIVE:
To assess the association of single nucleotide polymorphisms (SNPs) of dual specificity phosphatase 9 (DUSP9) gene rs5945326 locus with gestational diabetes mellitus (GDM).
METHODS:
Genotypes for the rs5945326 locus were determined for 206 pregnant women with GDM (GDM group) and 189 unaffected pregnant women (control group). Allelic and genotypic frequencies of the GDM and control groups were compared. For individuals with various genotypes, the level of blood glucose, serum lipids, and body mass index (BMI) were also compared.
RESULTS:
The frequencies of AA, AG and GG genotypes for the GDM group were 32.2%, 52.2% and 15.6%, respectively, and 41.2%, 43.9% and 15.0%, for the control group, respectively. No significant difference was detected in the distribution of above genotypes between the two groups (chi-square=3.601, P=0.165). The frequencies of alleles A and G were 58.3% and 41.7% in the GDM group, and 63.1% and 36.9% in the control group, respectively. No significant difference was detected between the two groups too (chi-square=1.894, P=0.188). The high density lipoprotein (HDL) levels of the GG genotype [(2.34×0.61) mmol/L] was significantly higher than that of the AG+AA genotype [(2.06×0.56) mmol/L] (t=2.993, P=0.003). No significant difference was detected in other clinical indexes between the two groups (P> 0.05).
CONCLUSION
The SNP rs5945326 in DUSP9 gene may be not associated with the risk of GDM. However, there are correlated with HDL levels.
Alleles
;
Diabetes, Gestational
;
genetics
;
Dual-Specificity Phosphatases
;
genetics
;
Female
;
Gene Frequency
;
Genotype
;
Humans
;
Mitogen-Activated Protein Kinase Phosphatases
;
genetics
;
Polymorphism, Single Nucleotide
;
Pregnancy
4.Novel Genetic Associations Between Lung Cancer and Indoor Radon Exposure.
Jung Ran CHOI ; Sang Baek KOH ; Seong Yong PARK ; Hye Run KIM ; Hyojin LEE ; Dae Ryong KANG
Journal of Cancer Prevention 2017;22(4):234-240
BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide, for which smoking is considered as the primary risk factor. The present study was conducted to determine whether genetic alterations induced by radon exposure are associated with the susceptible risk of lung cancer in never smokers. METHODS: To accurately identify mutations within individual tumors, next generation sequencing was conduct for 19 pairs of lung cancer tissue. The associations of germline and somatic variations with radon exposure were visualized using OncoPrint and heatmap graphs. Bioinformatic analysis was performed using various tools. RESULTS: Alterations in several genes were implicated in lung cancer resulting from exposure to radon indoors, namely those in epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), NK2 homeobox 1 (NKX2.1), phosphatase and tensin homolog (PTEN), chromodomain helicase DNA binding protein 7 (CHD7), discoidin domain receptor tyrosine kinase 2 (DDR2), lysine methyltransferase 2C (MLL3), chromodomain helicase DNA binding protein 5 (CHD5), FAT atypical cadherin 1 (FAT1), and dual specificity phosphatase 27 (putative) (DUSP27). CONCLUSIONS: While these genes might regulate the carcinogenic pathways of radioactivity, further analysis is needed to determine whether the genes are indeed completely responsible for causing lung cancer in never smokers exposed to residential radon.
Cadherins
;
Computational Biology
;
DNA-Binding Proteins
;
Dual-Specificity Phosphatases
;
Genes, Homeobox
;
Lung Neoplasms*
;
Lung*
;
Lysine
;
Radioactivity
;
Radon*
;
Receptor, Epidermal Growth Factor
;
Risk Factors
;
Smoke
;
Smoking
;
TYK2 Kinase
5.microRNA-200a-3p increases 5-fluorouracil resistance by regulating dual specificity phosphatase 6 expression.
Heejin LEE ; Chongtae KIM ; Hoin KANG ; Hyosun TAK ; Sojin AHN ; Sungjoo Kim YOON ; Hyo Jeong KUH ; Wook KIM ; Eun Kyung LEE
Experimental & Molecular Medicine 2017;49(5):e327-
Acquisition of resistance to anti-cancer drugs is a significant obstacle to effective cancer treatment. Although several efforts have been made to overcome drug resistance in cancer cells, the detailed mechanisms have not been fully elucidated. Here, we investigated whether microRNAs (miRNAs) function as pivotal regulators in the acquisition of anti-cancer drug resistance to 5-fluorouracil (5-FU). A survey using a lentivirus library containing 572 precursor miRNAs revealed that five miRNAs promoted cell survival after 5-FU treatment in human hepatocellular carcinoma Hep3B cells. Among the five different clones, the clone expressing miR-200a-3p (Hep3B-miR-200a-3p) was further characterized as a 5-FU-resistant cell line. The cell viability and growth rate of Hep3B-miR-200a-3p cells were higher than those of control cells after 5-FU treatment. Ectopic expression of a miR-200a-3p mimic increased, while inhibition of miR-200a-3p downregulated, cell viability in response to 5-FU, doxorubicin, and CDDP (cisplatin). We also showed that dual-specificity phosphatase 6 (DUSP6) is a novel target of miR-200a-3p and regulates resistance to 5-FU. Ectopic expression of DUSP6 mitigated the pro-survival effects of miR-200a-3p. Taken together, these results lead us to propose that miR-200a-3p enhances anti-cancer drug resistance by decreasing DUSP6 expression.
Carcinoma, Hepatocellular
;
Cell Line
;
Cell Survival
;
Clone Cells
;
Doxorubicin
;
Drug Resistance
;
Dual Specificity Phosphatase 6*
;
Dual-Specificity Phosphatases*
;
Ectopic Gene Expression
;
Fluorouracil*
;
Humans
;
Lentivirus
;
MicroRNAs
6.Regulatory Roles of MAPK Phosphatases in Cancer.
Heng Boon LOW ; Yongliang ZHANG
Immune Network 2016;16(2):85-98
The mitogen-activated protein kinases (MAPKs) are key regulators of cell growth and survival in physiological and pathological processes. Aberrant MAPK signaling plays a critical role in the development and progression of human cancer, as well as in determining responses to cancer treatment. The MAPK phosphatases (MKPs), also known as dual-specificity phosphatases (DUSPs), are a family of proteins that function as major negative regulators of MAPK activities in mammalian cells. Studies using mice deficient in specific MKPs including MKP1/DUSP1, PAC-1/DUSP2, MKP2/DUSP4, MKP5/DUSP10 and MKP7/DUSP16 demonstrated that these molecules are important not only for both innate and adaptive immune responses, but also for metabolic homeostasis. In addition, the consequences of the gain or loss of function of the MKPs in normal and malignant tissues have highlighted the importance of these phosphatases in the pathogenesis of cancers. The involvement of the MKPs in resistance to cancer therapy has also gained prominence, making the MKPs a potential target for anti-cancer therapy. This review will summarize the current knowledge of the MKPs in cancer development, progression and treatment outcomes.
Animals
;
Dual-Specificity Phosphatases
;
Homeostasis
;
Humans
;
Mice
;
Mitogen-Activated Protein Kinase Phosphatases*
;
Mitogen-Activated Protein Kinases
;
Pathologic Processes
;
Phosphoric Monoester Hydrolases
7.Dual-specificity Phosphatase 1 Deficiency Induces Endometrioid Adenocarcinoma Progression via Activation of Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Pathway.
Yuan YANG ; Jing-Yi ZHOU ; Li-Jun ZHAO ; Bao-Rong GAO ; Xiao-Ping WAN ; Jian-Liu WANG
Chinese Medical Journal 2016;129(10):1154-1160
BACKGROUNDPreviously, we reported that dual-specificity phosphatase 1 (DUSP1) was differentially expressed in endometrioid adenocarcinoma (EEA). However, the role of DUSP1 in EEA progression and the relationship between DUSP1 and medroxyprogesterone (MPA) are still unclear.
METHODSThe expression of DUSP1 in EEA specimens was detected by immunohistochemical analysis. The effect of DUSP1 on cell proliferation was analyzed by Cell Counting Kit 8 and colony formation assay, and cell migration was analyzed by transwell assay. MPA-induced DUSP1 expression in EEA cells was measured by Western blot.
RESULTSDUSP1 expression was deficient in advanced International Federation of Gynecology and Obstetrics stage, high-grade and myometrial invasive EEA. In EEA cell lines (Hec1A, Hec1B, RL952, and Ishikawa), the DUSP1 expression was substantially higher in Ishikawa cells than in other cell lines (P < 0.05). Knockdown of DUSP1 promoted Ishikawa cells proliferation, migration, and activation of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/Erk) pathway. MPA-induced DUSP1 expression and inhibited MAPK/Erk pathway in Ishikawa cells.
CONCLUSIONSOur data suggest that DUSP1 deficiency promotes EEA progression via MAPK/Erk pathway, which may be reversed by MPA, suggesting that DUSP1 may serve as a potential therapeutic target for the treatment of EEA.
Carcinoma, Endometrioid ; metabolism ; Cell Culture Techniques ; Cell Proliferation ; genetics ; physiology ; Dual-Specificity Phosphatases ; genetics ; metabolism ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Female ; Humans ; Mitogen-Activated Protein Kinases ; metabolism
8.Role of Extracellular Signal-Regulated Kinase 1/2 and Reactive Oxygen Species in Toll-Like Receptor 2-Mediated Dual-Specificity Phosphatase 4 Expression.
Yeungnam University Journal of Medicine 2013;30(1):10-16
BACKGROUND: Toll-like receptors (TLRs) are well-known pattern recognition receptors. Among the 13 TLRs, TLR2 is the most known receptor for immune response. It activates mitogen-activated protein kinases (MAPKs), which are counterbalanced by MAPK phosphatases [MKPs or dual-specificity phosphatases (DUSPs)]. However, the regulatory mechanism of DUSPs is still unclear. In this study, the effect of a TLR2 ligand (TLR2L, Pam3CSK4) on DUSP4 expression in Raw264.7 cells was demonstrated. METHODS: A Raw264.7 mouse macrophage cell line was cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and 1% antibiotics (100 U/mL penicillin and 100 g/mL streptomycin) at 37degrees C in 5% CO2. TLR2L (Pam3CSK4)-mediated DUSP4 expressions were confirmed with RT-PCR and western blot analysis. In addition, the detection of reactive oxygen species (ROS) was measured with lucigenin assay. RESULTS: Pam3CSK4 induced the expression of DUSP1, 2, 4, 5 and 16. The DUSP4 expression was also increased by TLR4 and 9 agonists (lipopolysaccharide and CpG ODN, respectively). Pam3CSK4 also induced ERK1/2 phosphorylation and ROS production, and the Pam3CSK4-induced DUSP4 expression was decreased by ERK1/2 (U0126) and ROS (DPI) inhibitors. U0126 suppressed the ROS production by Pam3CSK4. CONCLUSION: Pam3CSK4-mediated DUSP4 expression is regulated by ERK1/2 and ROS. This finding suggests the physiological importance of DUSP4 in TLR2-mediated immune response.
Acridines
;
Animals
;
Anti-Bacterial Agents
;
Blotting, Western
;
Butadienes
;
Cell Line
;
Dual-Specificity Phosphatases
;
Macrophages
;
Mice
;
Mitogen-Activated Protein Kinase Phosphatases
;
Mitogen-Activated Protein Kinases
;
Nitriles
;
Penicillins
;
Phosphorylation
;
Phosphotransferases
;
Reactive Oxygen Species
;
Receptors, Pattern Recognition
;
Toll-Like Receptors
9.Down regulation of mitogen activated protein kinase phosphatase-1 mediate acquired multidrug resistance in pancreatic adenocarcinoma cell line SW1990/Fu.
Jun-chao GUO ; Yu-pei ZHAO ; Quan LIAO ; Ge CHEN ; Yu ZHU
Chinese Journal of Surgery 2006;44(7):473-475
OBJECTIVETo investigate the role of mitogen activated protein kinase phosphatase-1 (MKP-1) in mediating acquired multidrug resistance in pancreatic adenocarcinoma cell line SW1990/Fu.
METHODSTo detect MKP-1 mRNA expression, Northern blot analysis was carried out in well established drug resistant pancreatic adenocarcinoma cell line SW1990/Fu, SW1990 and MiaPaCa-2 cell lines. To further elucidate the exact role of MKP-1, Western blot hybridization was performed in these three cell lines.
RESULTSNorthern blot analysis of total RNA isolated from SW1990/Fu, SW1990 and MiaPaCa-2 cell lines revealed the presence of the 2400 bp MKP-1 transcript 7 at relatively high levels in pancreatic cancer cell lines SW1990 and MiaPaCa-2. In the SW1990/Fu, the MKP-1 transcript was detectable at very low level. Densitometric analysis with normalization to 7S indicated that MKP-1 mRNA expression level was significantly decreased in SW1990/Fu in comparison with the parental and MiaPaCa-2 cell lines. MKP-1 protein expression level in SW1990/Fu detected by Western blot was coincident with mRNA level.
CONCLUSIONSMKP-1 may be involved in acquired multidrug resistance in pancreatic adenocarcinoma, and we could hypothesized that alterations of intra-cellular transduction signal system acts as an important role in multidrug resistance of tumor cells.
Adenocarcinoma ; drug therapy ; enzymology ; pathology ; Blotting, Northern ; Blotting, Western ; Cell Cycle Proteins ; biosynthesis ; genetics ; physiology ; Cell Line, Tumor ; Down-Regulation ; Drug Resistance, Multiple ; Drug Resistance, Neoplasm ; Dual Specificity Phosphatase 1 ; Humans ; Immediate-Early Proteins ; biosynthesis ; genetics ; physiology ; Pancreatic Neoplasms ; drug therapy ; enzymology ; pathology ; Phosphoprotein Phosphatases ; biosynthesis ; genetics ; physiology ; Protein Phosphatase 1 ; Protein Tyrosine Phosphatases ; biosynthesis ; genetics ; physiology ; RNA, Messenger ; genetics
10.cDNA Microarray Analysis of Differential Gene Expression in Gastric Cancer Cells Sensitive and Resistant to 5-Fluorouracil and Cisplatin.
Myung Ju AHN ; Young Do YOO ; Ki Hwan LEE ; Joon Ik AHN ; Dong Hyun YU ; Hye Sook LEE ; Ho Suck OH ; Jung Hye CHOI ; Yong Sung LEE
Cancer Research and Treatment 2005;37(1):54-62
PURPOSE: Gastric cancer is one of the most prevalent cancers worldwide. 5-fluorouracil (5-FU) and cisplatin are the most commonly used drugs for the treatment of gastric cancer. However, a significant number of tumors often fail to respond to chemotherapy. MATERIALS AND METHODS: To better understand the molecular mechanisms underlying drug resistance in gastric cancer the gene expression in gastric cancer cells, which were either sensitive or resistant to 5-FU and cisplatin, were examined using cDNA microarray analysis. To confirm the differential gene expression, as determined using the microarray, semiquantitative RT-PCR was performed on a subset of differentially expressed cDNAs. RESULTS: 69 and 45 genes, which were either up-regulated (9 and 22 genes) or down-regulated (60 and 25 genes), were identified in 5-FU- and cisplatin-resistant cells, respectively. Several genes, such as adaptor-related protein complex 1 and baculoviral IAP repeat-containing 3, were up-regulated in both drug-resistant cell types. Several genes, such as the ras homolog gene family, tropomyosin, tumor rejection antigen, protein disulfide isomerase-related protein, melanocortin 1 receptor, defensin, cyclophilin B, dual specificity phosphatase 8 and hepatocyte nuclear factor 3, were down-regulated in both drug-resistant cell types. CONCLUSION: These findings show that cDNA microarray analysis can be used to obtain gene expression profiles that reflect the effect of anticancer drugs on gastric cancer cells. Such data may lead to the assigning of signature expression profiles of drug-resistant tumors, which may help predict responses to drugs and assist in the design of tailored therapeutic regimens to overcome drug resistance.
Adaptor Protein Complex 1
;
Cisplatin*
;
Cyclophilins
;
DNA, Complementary*
;
Drug Resistance
;
Drug Therapy
;
Dual-Specificity Phosphatases
;
Fluorouracil*
;
Gene Expression*
;
Hepatocytes
;
Humans
;
Oligonucleotide Array Sequence Analysis*
;
Receptor, Melanocortin, Type 1
;
Stomach Neoplasms*
;
Transcriptome
;
Tropomyosin

Result Analysis
Print
Save
E-mail