1.Steroid sulfatase inhibitor DU-14 prevents amyloid β-protein-induced depressive-like behavior and theta rhythm suppression in rats.
Xing-Hua YUE ; Zhao-Jun WANG ; Mei-Na WU ; Hong-Yan CAI ; Jun ZHANG
Acta Physiologica Sinica 2025;77(5):801-810
The hippocampus, a major component of the limbic system, is the most important region related to emotion regulation and memory processing. Cognitive impairment and depressive symptoms observed in Alzheimer's disease (AD) patients may be attributed to hippocampal damage caused by amyloid β-protein (Aβ). Our previous studies have demonstrated that a steroid sulfatase inhibitor DU-14 can enhance hippocampal synaptic plasticity and spatial memory abilities in a chronic AD murine model by counteracting the toxic effects of Aβ. However, limited experimental evidence exists regarding the efficacy of steroid sulfatase inhibitor on depressive symptoms in AD animal models. In this study, we investigated the effects of DU-14 on depressive symptoms and theta-band neuronal oscillations in rats with intrahippocampal injection of Aβ1-42 using various behavioral tests such as sucrose preference test, tail suspension test, forced swimming test, and in vivo hippocampal local field potential (LFP) recording. The results demonstrated that, in comparison to the control group: (1) rats in the Aβ group exhibited a decrease in sucrose preference, indicating a loss of interest in pleasurable activities; (2) rats in the Aβ group displayed aggravated depressive-like behavior characterized by prolonged immobility time during tail suspension and forced swimming tests; (3) Aβ disrupted the induction of theta rhythm via tail pinch stimulation, and resulted in a significant reduction in peak power of theta rhythm. In contrast to the Aβ group, pretreatment with DU-14 resulted in: (1) a significant improvement in Aβ-induced anhedonia, as evidenced by increased sucrose preference; (2) significant alleviation of Aβ-induced despair and depressive-like behaviors, reflected by reduced immobility time during tail suspension and forced swimming tests; (3) successful mitigation of Aβ-mediated inhibition on bilateral hippocampal theta rhythm. These findings indicate that steroid sulfatase inhibitor DU-14 can counteract neurotoxicity induced by Aβ, and prevent Aβ-induced depressive-like behavior and suppression of theta rhythm.
Animals
;
Amyloid beta-Peptides/toxicity*
;
Rats
;
Depression/physiopathology*
;
Theta Rhythm/drug effects*
;
Hippocampus/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Alzheimer Disease/physiopathology*
;
Steryl-Sulfatase/antagonists & inhibitors*
;
Peptide Fragments
;
Behavior, Animal/drug effects*
2.Kaixin San-medicated serum attenuates Aβ_(25-35)-induced injury in SH-SY5Y cells by regulating autophagy.
Han-Wen XING ; Yi YANG ; Yan-Ping YIN ; Lan XIE ; Fang FANG
China Journal of Chinese Materia Medica 2025;50(2):313-321
The aim of this study is to investigate the regulation of Kaixin San-medicated serum(KXS-MS) on autophagy induced by Aβ_(25-35) in SH-SY5Y cells. The SH-SY5Y cell model of Aβ_(25-35)(25 μmol·L~(-1))-induced injury was established, and different concentrations of KXS-MS were added into the culture media of cells, which were then incubated for 24 h. Cell viability was measured by the methyl thiazolyl tetrazolium(MTT) assay. The protein levels of microtubule-associated protein 1 light chain 3(LC3)Ⅰ, LC3Ⅱ, protein kinase B(Akt), p-Akt, mammalian target of rapamycin(mTOR), and p-mTOR were assessed by Western blot. Furthermore, the combination of rapamycin(Rapa)/3-methyladenine(3-MA) and low concentration of KXS-MS was added to the culture medium of SH-SY5Y cells injured by Aβ_(25-35), and the cell viability and the expression levels of the above proteins were determined. The results showed that Aβ_(25-35) decreased the cell viability, up-regulated the expression levels of LC3Ⅱ and LC3Ⅱ/LC3Ⅰ, and down-regulated the expression levels of p-Akt, p-mTOR, p-Akt/Akt, and p-mTOR/mTOR. Compared with the Aβ_(25-35) model group, KXS-MS treatment attenuated Aβ_(25-35)-induced injury and enhanced the survival of SH-SY5Y cells. Meanwhile, KXS-MS down-regulated the LC3Ⅱ/LC3Ⅰ level and up-regulated the p-Akt/Akt and p-mTOR/mTOR levels. Compared with the low-concentration KXS-MS group, Rapa did not affect the cell survival and the levels of p-Akt and p-Akt/Akt, while it up-regulated the levels of LC3Ⅱ and LC3Ⅱ/LC3Ⅰ and down-regulated the levels of p-mTOR and p-mTOR/mTOR. 3-MA significantly reduced the cell survival rate and p-Akt, p-Akt/Akt level in the KXS-MS group, while it had no significant effect on the levels of LC3Ⅱ, LC3Ⅱ/LC3Ⅰ, p-mTOR, and p-mTOR/mTOR. The above results indicate that KXS-MS exhibits protective effects against Aβ_(25-35)-induced damage in SH-SY5Y cells by up-regulating Akt/mTOR activity to inhibit autophagy.
Humans
;
Autophagy/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Amyloid beta-Peptides/toxicity*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cell Line, Tumor
;
Cell Survival/drug effects*
;
Peptide Fragments/toxicity*
;
Microtubule-Associated Proteins/genetics*
3.Chemical constituents from Ecballium elaterium and their cytotoxicity.
Yu-Wei SUN ; AYIZUOKELAMU YASEN ; Xue-Rui AN ; Wei LIU ; Tao YUAN
China Journal of Chinese Materia Medica 2025;50(8):2159-2166
To explore the chemical constituents of Ecballium elaterium and their cytotoxicity, this study employed multiple chromatographic techniques including normal-phase silica gel, MCI, octadecylsilyl(ODS), Sephadex LH-20 gel, and semi-preparative liquid chromatography for compound isolation from its active fraction. A total of 12 compounds were obtained, and they were identified according to the analysis of a variety of spectral data and literature comparison as 24Z-20,27-dihydroxy-16α,23α-epoxy-cucurbita-2-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside(1), cucurbitacin R(2), cucurbitacin B(3), cucurbitacin D(4), cucurbitacin I(5), cucurbitacin L(6), dehydrodiconiferyl alcohol(7), 3-hydroxy-4-methoxycinnamic acid(8), ferulaic acid(9), p-coumaric acid(10), rutin(11), and lariciresinol-4'-O-β-D-glucoside(12), among which compound 1 was a new compound. Compounds 2-6 had strong cytotoxicity against human lung carcinoma A549 cells with the IC_(50) values of(0.48±0.09),(0.03±0.002),(0.13±0.03),(0.87±0.14),(0.15±0.03) μmol·L~(-1), respectively, which were stronger than the positive control doxorubicin \[IC_(50)=(3.92±1.60) μmol·L~(-1)\].
Humans
;
Drugs, Chinese Herbal/toxicity*
;
Cell Line, Tumor
;
Cucurbitaceae/chemistry*
;
Cell Survival/drug effects*
4.Studies on common irritant components in three different base sources of Polygonati Rhizoma.
Yu-Xin GU ; Hong-Li YU ; Min SHEN ; Xin-Zhi WANG ; Kui-Long WANG ; Jie CAO ; Qian-Lin CHEN ; Yan-Qing XU ; Chang-Li SHEN ; Hao WU
China Journal of Chinese Materia Medica 2025;50(12):3223-3231
To explore the common irritant components in different base sources of Polygonati Rhizoma(PR). A rabbit eye irritation experiment was conducted to compare the irritant effects of raw products of Polygonatum kingianum, P. officinale, and P. multiflorum. The irritant effects of different solvent extraction parts and needle crystals of PR were compared, and the irritant components were screened. The morphology and structure of the purified needle crystal of PR were observed by microscope and scanning electron microscope and characterized by X-ray diffraction. Rabbit eye irritation and mouse abdominal inflammation model were used to evaluate rabbit eye irritation scores, inflammatory mediators, inflammatory factors levels in the peritoneal exudate of mice, with the peritoneal pathological section used as indicators. The inflammatory effect of needle crystals of PR was studied, and the content of calcium oxalate in three kinds of PR was determined by HPLC. The common protein in three kinds of PR was screened and compared by double enzymatic hydrolysis in solution combined with mass spectrometry. The results showed that three kinds of PR raw products had certain irritant effects on rabbit eyes, among which P. kingianum had the strongest irritant effect. There were no obvious irritant effects in the different solvent extraction parts of P. kingianum. Compared with the blank group, the needle crystal of PR had a significant irritant effect on rabbit eyes, and the inflammatory mediators and inflammatory factors in the peritoneal exudate were significantly increased(P<0.05) in a dose-dependent manner. Meanwhile, the peritoneal tissue of mice was damaged with significant inflammatory cell infiltration after intraperitoneal injection of needle crystal, indicating that needle crystal had an inflammatory effect. Microscope and scanning electron microscope observations showed that the needle crystals of PR were slender, with a length of about 100-200 μm and sharp ends. X-ray diffraction analysis showed that the needle crystals of PR were calcium oxalate monohydrate crystals. The results of HPLC showed that the content of calcium oxalate in P. kingianum was the highest among the three kinds of PR. It was speculated that the content of needle crystal in P. kingianum was higher than that in P. officinale and P. multiflorum, which was consistent with the results of the rabbit eye irritation experiment. The results of mass spectrometry showed that ribosome inactivating protein and mannose/sialic acid binding lectin were related to inflammation and cell metabolism in all three kinds of PR. There was no obvious irritant effect in different solvent extracts of PR. The calcium oxalate needle crystal contained was the main irritant component of PR, and three kinds of PR contained common ribosome inactivating protein and mannose/sialic acid binding lectin, which may be related to the inflammatory irritant effect of PR.
Animals
;
Rabbits
;
Mice
;
Polygonatum/chemistry*
;
Drugs, Chinese Herbal/toxicity*
;
Rhizome/chemistry*
;
Male
;
Eye/drug effects*
;
Female
;
Humans
5.Influences of dihydromyricetin on proliferation and apoptosis of chondrocytes in osteoarthritis induced by H2O2 through ROS/p38-MAPK signal pathway.
Ying CHENG ; Hui-Juan CHEN ; Ting YANG
China Journal of Orthopaedics and Traumatology 2025;38(4):396-402
OBJECTIVE:
To analyze the influences of dihydromyricetin on the proliferation and apoptosis of chondrocytes in osteoarthritis induced by hydrogen peroxide (H2O2) through reactive oxygen species (ROS)/p38 mitogen activated protein kinase (p38-MAPK) pathway.
METHODS:
Five C57BL/6J mice were euthanized by cervical dislocation after anesthesia. Chondrocytes were extracted and cultured.After passage, the chondrocytes were divided into control group, H2O2 group (0.8 μmol·L-1 H2O2), dihydromyricetin low concentration group (0.8 μmol·L-1 H2O2+20 μmol·L-1 dihydromyricetin), dihydromyricetin high concentration group (0.8 μmol·L-1 H2O2+80 μmol·L-1 dihydromyricetin), and ROS inhibitor N-acetylcysteine (NAC) group (0.8 μmol·L-1 H2O2+5 mmol·L-1 NAC). The activity of chondrocytes was measured by methyl thiazolyl tetrazolium (MTT) assay. The apoptosis rate of chondrocytes was measured by Hoechst 33342 method. The level of ROS in chondrocytes was measured by 2, 7-dichlorofluorescein diacetate (DCFH-DA) fluorescence probe.The level of Type II collagen α1 (Col2α1) mRNA was measured by qRT-PCR.And the expression of Col2α1, p-p38-MAPK/p38-MAPK, B cell lymphoma gene-2 (Bcl-2) and Bcl-2 associated X protein (Bax) proteins was detected by Western blot.
RESULTS:
The chondrocytes showed swirling fibrous mass, and the expression of COL2α was positive. Compared with the control group, the chondrocyte viability, apoptosis rate, ROS fluorescence intensity, p-p38-MAPK/p38-MAPK, and the expression of Bax protein in H2O22 group increased, the level of Col2α1 mRNA, and the expression of Col2α1 and Bcl-2 proteins decreased (P<0.05). Compared with H2O2 group, the chondrocyte viability, apoptosis rate, ROS fluorescence intensity, p-p38-MAPK/p38-MAPK, and the expression of Bax protein in dihydromyricetin low concentration group, dihydromyricetin high concentration group, and NAC group decreased, the level of Col2α1 mRNA, and the expression of Col2α1 and Bcl-2 proteins increased (P<0.05).
CONCLUSION
Dihydromyricetin may inhibit chondrocyte apoptosis, inflammatory reaction and oxidative stress by inhibiting ROS/p38-MAPK pathway. Dihydromyricetin may be a potential drug for treating osteoarthritis.
Animals
;
Chondrocytes/metabolism*
;
Apoptosis/drug effects*
;
Hydrogen Peroxide/toxicity*
;
Osteoarthritis/physiopathology*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Mice
;
Flavonols/pharmacology*
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Cell Proliferation/drug effects*
;
Male
;
Signal Transduction/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Cells, Cultured
6.PM2.5-induced M2 Polarization and IL-1α Secretion by Tumor-associated Macrophages Promotes Lung Adenocarcinoma Progression.
Bomiao QING ; Xiaolan LI ; Qin RAN ; Guoping LI
Chinese Journal of Lung Cancer 2025;28(9):667-679
BACKGROUND:
Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer morbidity and mortality worldwide, and its initiation and progression are closely associated with the tumor immune microenvironment. Increasing evidence suggests that environmental exposure is a critical factor influencing lung cancer development. Among these factors, fine particulate matter (PM2.5), a major component of air pollution, has been strongly linked to elevated lung cancer risk and unfavorable prognosis. However, the underlying immunoregulatory mechanisms by which PM2.5 drives LUAD progression remain poorly understood. Tumor-associated macrophages (TAMs), especially those polarized toward the M2 phenotype, are key components of the tumor microenvironment and play crucial roles in tumor growth, angiogenesis, and immune evasion. This study aims to investigate the effects of PM2.5 exposure on TAMs and to identify the key pro-tumorigenic factors mediating this process.
METHODS:
A mouse orthotopic lung cancer model under PM2.5 exposure was established to assess lung tumor growth and macrophage phenotypic alterations using in vivo imaging and flow cytometry. A subcutaneous tumor model involving co-inoculated macrophages and tumor cells was used to further verify the effects of PM2.5 on the function of TAMs and tumor malignancy. Combining in vitro experiments, flow cytometry, Western blot, reverse transcription quantitative polymerase chain reaction (RT-qPCR), cell counting kit-8 (CCK-8) assay, colony formation assay, and wound healing assay were employed to evaluate the regulatory effects of PM2.5 on the polarization of bone marrow-derived macrophages (BMDMs) as well as tumor cell proliferation, migration, and colony-forming ability. Transcriptome sequencing integrated with TISIDB (Tumor-immune System Interactions Database) and GEPIA (Gene Expression Profiling Interactive Analysis) databases was performed to identify key cytokines for further functional validation.
RESULTS:
In the mouse orthotopic lung cancer model, PM2.5 exposure significantly promoted tumor growth and increased the proportion of M2-type TAMs (P<0.05). Subcutaneous co-inoculation with PM2.5-treated BMDMs markedly enhanced tumor proliferation and elevated the intratumoral M2-type TAMs. PM2.5-pretreated BMDMs exhibited an immunosuppressive programmed cell death ligand 1 (PD-L1)+/arginase 1 (Arg1)+ phenotype, and their conditioned media significantly promoted proliferation, migration, and colony formation of Lewis lung carcinoma cells (LLC) and B16 melanoma cells (B16) (P<0.05). Transcriptome analysis revealed that PM2.5 substantially altered macrophage gene expression, with IL-1α identified as a key upregulated secreted cytokine enriched in immunosuppressive related signaling pathways. Clinical database analyses further indicated that IL-1α expression was positively correlated with macrophage and regulatory T cells (Treg) infiltration in the LUAD immune microenvironment, and that high IL-1α expression was associated with worse overall survival in LUAD patients (HR=1.5, P=0.0053). Western blot, RT-qPCR, and immunofluorescence confirmed that PM2.5 exposure significantly upregulated IL-1α expression and secretion in TAMs.
CONCLUSIONS
PM2.5 exposure facilitates LUAD progression by inducing an immunosuppressive phenotype in macrophages and enhancing the malignant behaviors of tumor cells. Mechanistically, IL-1α may serve as a key pro-tumorigenic cytokine secreted by macrophages under PM2.5 exposure. This study provides new insights into the pathogenesis of PM2.5-associated LUAD and suggests that IL-1α could serve as a potential therapeutic target.
Animals
;
Mice
;
Tumor-Associated Macrophages/immunology*
;
Particulate Matter/toxicity*
;
Adenocarcinoma of Lung/metabolism*
;
Lung Neoplasms/genetics*
;
Humans
;
Disease Progression
;
Tumor Microenvironment/drug effects*
;
Cell Proliferation/drug effects*
;
Cell Line, Tumor
7.Protective effect of achyranthes bidentata against doxorubicin-induced spermatogenic disorder in mice: An investigation based on the glycolytic metabolic pathway.
Man-Yu WANG ; Yang FU ; Pei-Pei YUAN ; Li-Rui ZHAO ; Yan ZHANG ; Qing-Yun MA ; Yan-Jun SUN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
National Journal of Andrology 2025;31(2):99-107
OBJECTIVE:
To investigate the protective effect of achyranthes bidentata (AB) on sperm quality in mice with spermatogenic disorder through the glycolytic metabolic pathway and its action mechanism.
METHODS:
We equally randomized 40 Kunming mice into a normal control, a model control, a low-dose AB (3.5 g/kg) and a high-dose AB group (7.0 g/kg), and established the model of spermatogenic disorder in the latter three groups of mice by intraperitoneal injection of doxorubicin (30 mg/kg). Two days after modeling, we collected the testis and kidney tissues and blood samples from the mice for observation of the pathological changes in the testis tissue by HE staining, detection of perm motility with the sperm quality analyzer, examination of the apoptosis of testis cells by flow cytometry, measurement of the levels of testosterone (T), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) in the serum and testis tissue by ELISA, and determination of expressions of the key enzymes of glycolysis hexokinase Ⅱ (HK2), pyruvate kinase M2 (PKM2), platelet phosphofructokinase (PFKP), lactate dehydrogenase A (LDHA) and the meiosis proteins REC8 and SCP3 by Western blot, and the mRNA expressions of glycolytic phosphofructokinase 1 (PFK1), phosphoglycerate kinase 1 (PGK1), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) by fluorescence quantitative PCR (FQ-PCR).
RESULTS:
Compared with the model controls, the mice in the AB groups showed significant increases in the testis coefficient, kidney index, sperm concentration, sperm motility, spermatogonia, primary spermatocytes, spermatids, sperm count and the serum T level (P<0.05 or P<0.01), but dramatic decreases in the apoptosis of testis cells and percentage of morphologically abnormal sperm (P<0.01). Achyranthes bidentata also significantly elevated the levels of SOD and CAT, and down-regulated the mRNA expressions of MDA, TNF-α and IL-1β (P<0.05 or P<0.01), and up-regulated the protein expressions of HK2, PKM2, PFKP, LDHA, REC8 and SCP3, and expressions of the glycolysis key genes Pfk1 and Pgk1 (P<0.05 or P<0.01).
CONCLUSION
Achyranthes bidentata ameliorates doxorubicin-induced spermatogenic disorder in mice by regulating the glycolytic pathway and reducing oxidative stress and the expressions of inflammatory factors.
Glycolysis/drug effects*
;
Doxorubicin/toxicity*
;
Spermatogenesis/drug effects*
;
Random Allocation
;
Male
;
Animals
;
Mice
;
Disease Models, Animal
;
Achyranthes/chemistry*
;
Spermatozoa/pathology*
;
Oxidative Stress/drug effects*
;
Primary Cell Culture
;
Apoptosis/drug effects*
;
Sperm Motility/drug effects*
;
Testis/pathology*
;
Infertility, Male/prevention & control*
;
Medicine, Chinese Traditional/methods*
;
Animals, Outbred Strains
8.Antagonistic effect of Lactobacillus reuteri on testicular reproductive toxicity of neonicotinoid insecticides in mice.
Zhen-Han XU ; Pei-Gen CHEN ; Jin-Tao GUO ; Lin-Yan LÜ ; Hai-Cheng CHEN ; Gui-Hua LIU
National Journal of Andrology 2025;31(2):131-137
OBJECTIVE:
To explore the effect of Lactobacillus reuteri on testicular injury in mice exposed to neonicotinoid insecticides (NNI).
METHODS:
Fifteen C57BL/6 male mice were randomly divided into control group (CTRL group), exposure group (NNI group) and Lactobacillus intervention group (NNI-L group). The mice in CTRL group were given 0.02ml/g of 0.5% carboxymethyl cellulose sodium solution by gavage for 14 days. The mice in NNI group were given 0.02 ml/g of NNI mixture by gavage for 14 days. The mice in NNI-L group were given 0.02 ml/g of NNI mixture by gavage and 5×108cfu/ml of Lactobacillus reuteri powder solution for 14 days. Then, the histomorphology and function of testicle were evaluated by hematoxylin-eosin staining, immunofluorescence staining and RNA sequencing.
RESULTS:
Compared with CTRL group, the thickness of testicular seminiferous epithelium in the NNI group was significantly thinner. And the decline in the number of spermatogenic cells and sperm was observed. And the expression of spermatogonial stem cell marker UCHL1 was down-regulated which was significantly improved in NNI-L group compared with the NNI group. The abnormal expressions of hormone and sperm methylation related genes in testis of NNI group were detected by RNA sequencing, with significant down-regulation being found in NPFF and IGF2. While the expression of HSD3B8 was significantly up-regulated. The abnormal expression of these genes could be significantly improved after oral administration of Lactobacillus reuteri.
CONCLUSION
Testicular spermatogenesis and endocrine function can be damaged by NNI exposure. And oral administration of Lactobacillus reuteri protects testis from the adverse effects of NNI toxicity.
Animals
;
Male
;
Limosilactobacillus reuteri
;
Testis/pathology*
;
Mice
;
Mice, Inbred C57BL
;
Insecticides/toxicity*
;
Neonicotinoids/toxicity*
;
Probiotics
;
Spermatogenesis/drug effects*
9.Treadmill exercise protects against methylmercury neurotoxicity by increasing BDNF in the mouse brain.
Environmental Health and Preventive Medicine 2025;30():98-98
BACKGROUND:
Methylmercury (MeHg) causes damage specifically in cerebrocortical neurons, but not in hippocampal neurons. In our previous studies using cultured neurons, we found that brain-derived neurotrophic factor (BDNF), which is prominently present in hippocampal neurons, plays a key role in resistance to MeHg neurotoxicity. Our findings, combined with recent findings that moderate exercise increases BDNF in the brain, led us to hypothesize that moderate exercise protects against MeHg-induced neurotoxicity by inducing BDNF expression.
METHODS:
C57 black 6NJcl (C57BL/6NJcl) male mice were used to evaluate the effects of treadmill exercise (a moderate exercise) on the neurotoxicity of MeHg exposure at 1.5 mg/kg/day. The effects of treadmill exercise on MeHg neurotoxicity were evaluated through neurobehavioral, neuropathological, and biochemical analyses using brain tissue, blood, and muscle tissue.
RESULTS:
Treadmill exercise had a significant inhibitory effect on the neurological symptoms associated with apoptotic neuronal death and subsequent cerebrocortical neuron loss induced by MeHg exposure. In the cerebral cortex, treadmill exercise significantly increased BDNF levels and activated the neuroprotective-related BDNF-tropomyosin receptor kinase (Trk) B and p44/42 mitogen-activated protein kinase (MAPK) pathways along with significantly suppressing the neuronal cell death-associated p38 MAPK pathway. Furthermore, treadmill exercise significantly increased fibronectin type III domain containing 5 (FNDC5) expression in the muscle tissue and elevated ed the concentration of its metabolite, irisin, in the blood.
CONCLUSIONS
These results suggest that treadmill exercise increases BDNF in the brain and suppresses neurotoxic pathways, ultimately protecting against MeHg neurotoxicity. Moreover, the increase of BDNF in the brain may be attributed to the exercise-induced increased expression of FNDC5 in muscle tissue from where it is released into the blood as irisin and finally transferred into the brain and promoted BDNF production.
Animals
;
Brain-Derived Neurotrophic Factor/genetics*
;
Methylmercury Compounds/toxicity*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Physical Conditioning, Animal
;
Brain/drug effects*
;
Neurotoxicity Syndromes/prevention & control*
10.Effect of the combination of alkaloids from Euodiae Fructus and berberine in Zuojin Pill on cytotoxicity in HepG2 cells.
Yadong GAO ; An ZHU ; Ludi LI ; Yingzi LI ; Qi WANG
Journal of Peking University(Health Sciences) 2025;57(5):926-933
OBJECTIVE:
To investigate the hepatotoxicity of alkaloids from Euodiae Fructus combined with berberine (BBR) in Zuojin Pill, and to preliminarily explore the possible detoxification mechanism of the combination components.
METHODS:
The combination ratio of components was determined by the maximum concentration (Cmax) of the chemical components in Zuojin Pill. HepG2 cell model was used to investigate the combined toxicity of the hepatotoxic components from Euodiae Fructus, such as evodiamine (EVO) or dehydroevodiamine (DHED), with BBR for 48 h. The experimental groups were set as follows: the vehicle control group, the EVO group, the DHED group, the BBR group, and the combination group of EVO or DHED with BBR. The cell counting kit-8 (CCK-8) method was used to determine the cell viability, and the combination index (CI) was used to determine the combined toxicity of the components. The alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydroge-nase (LDH), and alkaline phosphatase (ALP) activities as well as total bilirubin (TBIL) content in the cell culture supernatant were detected. The protein expression levels of bile acid transporters, such as bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2), were detected by Western blot. The intracellular malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in HepG2 cells were detected.
RESULTS:
Compared with EVO or DHED group, the combination of EVO 1 μmol/L with BBR 10 μmol/L or DHED 50 μmol/L with BBR 35 μmol/L significantly increased cell viability of HepG2 cells (P < 0.01), with CI values of 77.89 or 4.49, respectively, much greater than 1. Significant decreases in the activities of ALT, AST, LDH, ALP, and TBIL content in the cell culture supernatant were found in both combination groups (P < 0.05, P < 0.01). Compared with the EVO group, the combination of EVO with BBR upregulated the protein expression levels of BSEP and MRP2. Compared with the DHED group, the combination of DHED with BBR significantly downregulated the protein expression levels of BSEP and MRP2 (P < 0.01). Compared with EVO or DHED group, the combination of EVO or DHED with BBR significantly reduced the MDA content in HepG2 cells (P < 0.05, P < 0.01).
CONCLUSION
A certain ratio of BBR combined with EVO or DHED had an antagonistic effect on HepG2 cytotoxicity, which might be related to regulating the expression of bile acid transpor-ters, and reducing lipid peroxidation damage.
Humans
;
Hep G2 Cells
;
Berberine/pharmacology*
;
Drugs, Chinese Herbal/toxicity*
;
Evodia/chemistry*
;
Alkaloids/pharmacology*
;
Cell Survival/drug effects*
;
Multidrug Resistance-Associated Proteins/metabolism*
;
Multidrug Resistance-Associated Protein 2
;
Quinazolines

Result Analysis
Print
Save
E-mail