1.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
2.MiR-224-5p regulates chemoresistance in colorectal cancer via Bcl-2-mediated autophagy.
Hui ZHOU ; Meng WU ; Shaihong ZHU ; Yi ZHANG
Journal of Central South University(Medical Sciences) 2025;50(2):190-203
OBJECTIVES:
Oxaliplatin (OXA) and 5-fluorouracil (5-FU) are 2 commonly used chemotherapeutic agents for colorectal cancer (CRC). MicroRNAs (miRNAs, miRs) play crucial roles in the development of chemoresistance in various cancers. However, the role and mechanism of miR-224-5p in regulating CRC chemoresistance remain unclear. This study aims to investigate the function of miR-224-5p in chemoresistant CRC cells and the underlying mechanisms.
METHODS:
CRC datasets GSE28702 and GSE69657 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs between drug-sensitive and resistant groups (OXA or 5-FU) were analyzed, and miR-224-5p was identified as the target miRNA. Chemoresistant cell lines HCT15-OXR, HCT15-5-FU, SW480-OXR, and SW480-5-FU were established. Transient transfections were performed using miR-224-5p mimics, inhibitors, and their respective negative controls (control mimic, control inhibitor) in these cell lines. Cells were treated with different concentrations of OXA or 5-FU post-transfection, and the half-maximal inhibitory concentration (IC50) was determined using the cell counting kit-8 (CCK-8) assay. Cell proliferation was assessed by CCK-8 and colony formation assays. The expression levels of miR-224-5p, LC3, and P62 were measured by real-time polymerase chain reaction (real-time PCR) and/or Western blotting. Autophagic flux was assessed using a tandem fluorescent-tagged LC3 reporter assay. TargetScan 8.0, miRTarBase, miRPathDB, and HADb were used to predict B-cell lymphoma-2 (Bcl-2) as a potential miR-244-5p target, which was further validated by dual-luciferase reporter assays.
RESULTS:
Chemoresistant CRC cells exhibited down-regulated miR-224-5p expression, whereas up-regulation of miR-224-5p enhanced chemotherapy sensitivity. Exposure to OXA or 5-FU significantly increased autophagic activity in chemoresistant CRC cells, which was reversed by miR-224-5p overexpression. Dual-luciferase assays verified Bcl-2 as a direct target of miR-224-5p.
CONCLUSIONS
MiR-224-5p regulates chemoresistance in CRC by modulating autophagy through direct targeting of Bcl-2.
Humans
;
MicroRNAs/physiology*
;
Colorectal Neoplasms/drug therapy*
;
Drug Resistance, Neoplasm/genetics*
;
Autophagy/drug effects*
;
Fluorouracil/pharmacology*
;
Oxaliplatin
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Gene Expression Regulation, Neoplastic
3.Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control.
Xianzhe HUANG ; Wenwei CHEN ; Yanyan WANG ; Dmytro SHYTIKOV ; Yanwen WANG ; Wangyi ZHU ; Ruyi CHEN ; Yuwei HE ; Yanjia YANG ; Wei GUO
Frontiers of Medicine 2025;19(1):23-52
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
Neoplasms/metabolism*
;
Receptors, Notch/metabolism*
;
Disease Resistance/physiology*
;
Signal Transduction/physiology*
;
Humans
;
Drug Resistance, Neoplasm/physiology*
;
Molecular Targeted Therapy/methods*
4.Amyloid precursor protein regulates 5-fluorouracil resistance in human hepatocellular carcinoma cells by inhibiting the mitochondrial apoptotic pathway.
Xiao-Long WU ; Ying CHEN ; Wen-Cui KONG ; Zhong-Quan ZHAO
Journal of Zhejiang University. Science. B 2020;21(3):234-245
Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality globally. It accounts for the majority of primary liver cancer cases. Amyloid precursor protein (APP), a cell membrane protein, plays a vital role in the pathogenesis of Alzheimer's disease, and has been found to be implicated in tumor growth and metastasis. Therefore, to understand the relationship between APP and 5-fluorouracil (5-FU) resistance in liver cancer, Cell Counting Kit-8, apoptosis and cell cycle assays, western blotting, and reverse transcription-quantitative polymerase chain reaction (qPCR) analysis were performed. The results demonstrated that APP expression in Bel7402-5-FU cells was significantly up-regulated, as compared with that in Bel7402 cells. Through successful construction of APP-silenced (siAPP) and overexpressed (OE) Bel7402 cell lines, data revealed that the Bel7402-APP751-OE cell line was insensitive, while the Bel7402-siAPP cell line was sensitive to 5-FU in comparison to the matched control group. Furthermore, APP overexpression decreased, while APP silencing increased 5-FU-induced apoptosis in Bel7402 cells. Mechanistically, APP overexpression and silencing can regulate the mitochondrial apoptotic pathway and the expression of apoptotic suppressor genes (B-cell lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl)). Taken together, these results preliminarily revealed that APP overexpression contributes to the resistance of liver cancer cells to 5-FU, providing a new perspective for drug resistance.
Amyloid beta-Protein Precursor/physiology*
;
Apoptosis/drug effects*
;
Carcinoma, Hepatocellular/drug therapy*
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm
;
Fluorouracil/pharmacology*
;
Humans
;
Liver Neoplasms/drug therapy*
;
Mitochondria/physiology*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
bcl-X Protein/genetics*
5.Cyclooxygenase-2 promotes ovarian cancer cell migration and cisplatin resistance via regulating epithelial mesenchymal transition.
Lin DENG ; Ding-Qing FENG ; Bin LING
Journal of Zhejiang University. Science. B 2020;21(4):315-326
OBJECTIVE:
Drug-resistance and metastasis are major reasons for the high mortality of ovarian cancer (OC) patients. Cyclooxygenase-2 (COX-2) plays a critical role in OC development. This study was designed to evaluate the effects of COX-2 on migration and cisplatin (cis-dichloro diammine platinum, CDDP) resistance of OC cells and explore its related mechanisms.
METHODS:
Cell counting kit-8 (CCK-8) assay was used to detect the cytotoxicity effects of celecoxib (CXB) and CDDP on SKOV3 and ES2 cells. The effect of COX-2 on migration was evaluated via the healing test. Western blot and real-time quantitative polymerase chain reaction (qPCR) were used to analyze E-cadherin, vimentin, Snail, and Slug levels.
RESULTS:
COX-2 promoted drug-resistance and cell migration. CXB inhibited these effects. The combination of CDDP and CXB increased tumor cell sensitivity, reduced the amount of CDDP required, and shortened treatment administration time. COX-2 upregulation increased the expression of Snail and Slug, resulting in E-cadherin expression downregulation and vimentin upregulation.
CONCLUSIONS
COX-2 promotes cancer cell migration and CDDP resistance and may serve as a potential target for curing OC.
Celecoxib/pharmacology*
;
Cell Line, Tumor
;
Cell Movement
;
Cisplatin/pharmacology*
;
Cyclooxygenase 2/physiology*
;
Drug Resistance, Neoplasm
;
Epithelial-Mesenchymal Transition
;
Female
;
Humans
;
Ovarian Neoplasms/pathology*
;
Polymerase Chain Reaction
6.MicroRNAs involved in drug resistance of breast cancer by regulating autophagy.
Nan WEN ; Qing LV ; Zheng-Gui DU
Journal of Zhejiang University. Science. B 2020;21(9):690-702
Autophagy is a conserved catabolic process characterized by degradation and recycling of cytosolic components or organelles through a lysosome-dependent pathway. It has a complex and close relationship to drug resistance in breast cancer. MicroRNAs (miRNAs) are small noncoding molecules that can influence numerous cellular processes including autophagy, through the posttranscriptional regulation of gene expression. Autophagy is regulated by many proteins and pathways, some of which in turn have been found to be regulated by miRNAs. These miRNAs may affect the drug resistance of breast cancer. Drug resistance is the main cause of distant recurrence, metastasis and death in breast cancer patients. In this review, we summarize the causative relationship between autophagy and drug resistance of breast cancer. The roles of autophagy-related proteins and pathways and their associated miRNAs in drug resistance of breast cancer are also discussed.
Autophagy/physiology*
;
Breast Neoplasms/pathology*
;
Drug Resistance, Neoplasm
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs/physiology*
;
Signal Transduction/physiology*
7.Complex interplay between tumor microenvironment and cancer therapy.
Frontiers of Medicine 2018;12(4):426-439
Tumor microenvironment (TME) is comprised of cellular and non-cellular components that exist within and around the tumor mass. The TME is highly dynamic and its importance in different stages of cancer progression has been well recognized. A growing body of evidence suggests that TME also plays pivotal roles in cancer treatment responses. TME is significantly remodeled upon cancer therapies, and such change either enhances the responses or induces drug resistance. Given the importance of TME in tumor progression and therapy resistance, strategies that remodel TME to improve therapeutic responses are under developing. In this review, we provide an overview of the essential components in TME and the remodeling of TME in response to anti-cancer treatments. We also summarize the strategies that aim to enhance therapeutic efficacy by modulating TME.
Antineoplastic Agents
;
pharmacology
;
Drug Resistance
;
Humans
;
Neoplasm Staging
;
Neoplasms
;
drug therapy
;
pathology
;
Treatment Outcome
;
Tumor Microenvironment
;
drug effects
;
physiology
8.MiR-145 inhibits drug resistance to Oxaliplatin in colorectal cancer cells through regulating G protein coupled receptor 98.
Qiang FU ; Jing CHENG ; Jindai ZHANG ; Yonglei ZHANG ; Xiaobing CHEN ; Jianguo XIE ; Suxia LUO
Chinese Journal of Gastrointestinal Surgery 2017;20(5):566-570
OBJECTIVETo predict and identify the target gene of miR-145, and to explore the underlying mechanism of the inhibition of miR-145 on drug resistance to Oxaliplatin (L-OHP) in human colorectal cancer cells.
METHODSL-OHP-resistant human colorectal cancer cell line (HCT116/L-OHP) was established in vitro by exposing to increased concentrations of L-OHP in cell culture medium. MiR-145-mimics and its negative control (NC-miRNA) were transfected into HCT116/L-OHP cells using liposome to establish HCT116/L-OHPover-expressing miR-145 and HCT116/L-OHP. The target genes of miR-145 were predicted by bioinformatic analysis, and validated by dual luciferase activity assay. After determination of G protein coupled receptor 98(GPR98) as target gene, corresponding plasmids were constructed and transfected to establish HCT116/L-OHPover-expressing GPR98 and HCT116/L-OHP. HCT116/L-OHP cells over-expressing both GPR98 and miR-145 (HCT116/L-OHP) were acquired through modification of the binding sites of GPR98 cDNA with miR-145. CCK-8 assay was used to assess the proliferation (A value) and sensitivity to L-OHP (the lower the IC50, the stronger the sensitivity) in HCT116/L-OHP cells. Real-time quantitative PCR was used to measure the mRNA expression of miR-145 and GPR98. Western blot was used to examine the protein expression of GPR98 and drug-resistant associated protein, such as P-glycoprotein (gp), multiple drug-resistance protein 1(MRP1), cancer-inhibition gene PTEN.
RESULTSHCT116/L-OHP cell line was successfully established with ICof (42.34±1.05) mg/L and miR-145 mRNA expression of 0.27±0.04, which was higher than (9.81±0.95) mg/L (t=39.784, P=0.000) and lower than 1.00±0.09 (t=13.021, P=0.000) in HCT116 cells. Based on HCT116/L-OHP cells, HCT116/L-OHPcells were established successfully, with relative miR-145 expression of 10.01±1.05, which was higher than 1.06±0.14 in HCT116/L-OHPand 1.00±0.16 in HCT116/L-OHP (F=161.797, P=0.000). GPR98 was identified to be the target gene of miR-145. The relative mRNA and protein expressions of GPR98 in HCT116/L-OHPcells were 8.48±0.46 and 1.71±0.09, respectively, which were higher than those in HCT116/L-OHP(mRNA: 3.65±0.40, protein: 1.21±0.10) and HCT116/L-OHP (mRNA: 3.49±0.35, protein: 1.22±0.08; all P<0.05). The A value was 1.31±0.10, and the relative protein expressions of P-gp and MRP1 were 1.53±0.18 and 1.49±0.20 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHP (A value: 0.82±0.08, relative protein expression: 1.00±0.06 and 1.21±0.13, all P<0.05). The A value was 0.89±0.08, and the relative protein expressions of P-gp and MRP were 1.02±0.24 and 1.38±0.25 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHP(A value: 0.20±0.05, relative protein expression: 0.20±0.07, 0.55±0.10, all P<0.05). The relative protein expression of PTEN in HCT116/L-OHPcells was 0.12±0.03, which was lower than 1.25±0.14 in HCT116/L-OHP cells(P<0.05). In addition, relative protein expressions of P-gp and MRP1 were 1.02±0.24 and 1.38±0.25 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHPcells (0.20±0.07 and 0.55±0.10), while PTEN expression in HCT116/L-OHPcells was lower as compared to HCT116/L-OHPcells (1.41±0.16 vs. 1.98±0.13, P<0.05).
CONCLUSIONMiR-145 inhibits drug resistance to L-OHP of HCT116 cells through suppressing the expression of target gene GPR98.
ATP Binding Cassette Transporter, Sub-Family B ; drug effects ; ATP-Binding Cassette, Sub-Family B, Member 1 ; drug effects ; Cell Line, Tumor ; drug effects ; physiology ; Colorectal Neoplasms ; physiopathology ; Down-Regulation ; drug effects ; genetics ; Drug Resistance, Neoplasm ; drug effects ; genetics ; physiology ; HCT116 Cells ; drug effects ; physiology ; Humans ; In Vitro Techniques ; MicroRNAs ; genetics ; pharmacology ; Multidrug Resistance-Associated Proteins ; drug effects ; Organoplatinum Compounds ; pharmacology ; PTEN Phosphohydrolase ; drug effects ; RNA, Messenger ; Receptors, G-Protein-Coupled ; drug effects ; genetics
9.Autophagy in 5-Fluorouracil Therapy in Gastrointestinal Cancer: Trends and Challenges.
Jia-Cheng TANG ; Yi-Li FENG ; Xiao LIANG ; Xiu-Jun CAI
Chinese Medical Journal 2016;129(4):456-463
OBJECTIVE5-Fluorouracil (5-FU)-based combination therapies are standard treatments for gastrointestinal cancer, where the modulation of autophagy is becoming increasingly important in offering effective treatment for patients in clinical practice. This review focuses on the role of autophagy in 5-FU-induced tumor suppression and cancer therapy in the digestive system.
DATA SOURCESAll articles published in English from 1996 to date those assess the synergistic effect of autophagy and 5-FU in gastrointestinal cancer therapy were identified through a systematic online search by use of PubMed. The search terms were "autophagy" and "5-FU" and ("colorectal cancer" or "hepatocellular carcinoma" or "pancreatic adenocarcinoma" or "esophageal cancer" or "gallbladder carcinoma" or "gastric cancer").
STUDY SELECTIONCritical reviews on relevant aspects and original articles reporting in vitro and/or in vivo results regarding the efficiency of autophagy and 5-FU in gastrointestinal cancer therapy were reviewed, analyzed, and summarized. The exclusion criteria for the articles were as follows: (1) new materials (e.g., nanomaterial)-induced autophagy; (2) clinical and experimental studies on diagnostic and/or prognostic biomarkers in digestive system cancers; and (3) immunogenic cell death for anticancer chemotherapy.
RESULTSMost cell and animal experiments showed inhibition of autophagy by either pharmacological approaches or via genetic silencing of autophagy regulatory gene, resulting in a promotion of 5-FU-induced cancer cells death. Meanwhile, autophagy also plays a pro-death role and may mediate cell death in certain cancer cells where apoptosis is defective or difficult to induce. The dual role of autophagy complicates the use of autophagy inhibitor or inducer in cancer chemotherapy and generates inconsistency to an extent in clinic trials.
CONCLUSIONAutophagy might be a therapeutic target that sensitizes the 5-FU treatment in gastrointestinal cancer.
Antimetabolites, Antineoplastic ; therapeutic use ; Autophagy ; physiology ; Drug Resistance, Neoplasm ; Fluorouracil ; therapeutic use ; Gastrointestinal Neoplasms ; drug therapy ; pathology ; Humans
10.Aberrant DNA methylation and its targeted therapy in acute myeloid leukemia.
Xueying LI ; Lixia ZHU ; Xiujin YE
Journal of Zhejiang University. Medical sciences 2016;45(4):387-394
The occurrence and development of acute myeloid leukemia (AML) is not only related to gene mutations, but also influenced by abnormal epigenetic regulation, in which DNA methylation is one of the most important mechanisms. Abnormal DNA methylation may lead to the activation of oncogene and the inactivation of tumor suppressor gene, resulting in the occurrence of leukemia. The mutations of DNA methylation enzymes associated with AML may have certain characteristics. The AML with recurrent cytogenetic abnormalities is also related to abnormal methylation. Some fusion genes can alter DNA methylation status to participate in the pathogenesis of leukemia. In addition, chemotherapy drug resistance in patients with AML is associated with the change of gene methylation status. Considering the reversibility of the epigenetic modification, targeted methylation therapy has become a hotspot of AML research.
DNA Methylation
;
drug effects
;
genetics
;
physiology
;
DNA Modification Methylases
;
genetics
;
physiology
;
Drug Resistance, Neoplasm
;
genetics
;
Epigenesis, Genetic
;
genetics
;
physiology
;
Humans
;
Leukemia, Myeloid, Acute
;
etiology
;
genetics
;
pathology
;
Mutation
;
genetics

Result Analysis
Print
Save
E-mail