1.Correlation between ARID5B Gene SNP and MTX Resistance in Children with ALL.
Li-Fen ZHANG ; Yu MA ; Lian LI ; Wen-E LIU ; Xiao-Chun ZHANG
Journal of Experimental Hematology 2023;31(2):333-337
OBJECTIVE:
To investigate the correlation between single-nucleotide polymorphism (SNP) of ARID5B gene and resistance to methotrexate (MTX) in children with acute lymphoblastic leukemia (ALL).
METHODS:
A total of 144 children with ALL who were treated in General Hospital of Ningxia Medical University from January 2015 to November 2021 were enrolled and divided into MTX resistant group and non-MTX resistant group, with 72 cases in each group. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) technology was used to measure the SNP of ARID5B gene in all children and analyze its correlation with MTX resistant.
RESULTS:
There were no significant differences in the genotype and gene frequency of rs7923074, rs10821936, rs6479778, and rs2893881 between MTX resistant group and non-MTX resistant group (P>0.05). The frequency of C/C genotype in the MTX resistant group was significantly higher than that in the non-MTX resistant group, while the frequency of T/T genotype was opposite (P<0.05). The frequency of C allele in the MTX resistant group was significantly higher than that in the non-MTX resistant group, while the frequency of T allele was opposite (P<0.05). Multivariate logistic regression analysis showed that ARID5B gene rs4948488 TT genotype and T allele frequency were risk factors for MTX resistant in ALL children (P<0.05).
CONCLUSION
The SNP of ARID5B gene is associated with MTX resistant in ALL children.
Child
;
Humans
;
DNA-Binding Proteins/genetics*
;
Gene Frequency
;
Genotype
;
Methotrexate
;
Polymorphism, Single Nucleotide
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Transcription Factors/genetics*
;
Drug Resistance, Neoplasm
2.Research Advance of BCR-ABL Mutation and the Efficacy of Second and Third Generation TKI in Chronic Myeloid Leukemia--Review.
Journal of Experimental Hematology 2023;31(2):585-588
The treatment of chronic myeloid leukemia (CML) was revolutionized with the advent of the first-generation tyrosine kinase inhibitors (TKIs), but drug resistance developed during treatment, leading to the development of the second-generation (dasatinib, nilotinib, and bosutinib) and third-generation (ponatinib) TKI. Compared with previous treatment regimens, specific TKI can significantly improve the response rate, overall survival rate and prognosis of CML. Only a few patients with BCR-ABL mutation are insensitive to the second-generation TKIs, so it is suggested to select the second-generation TKIs for patients with specific mutations. For patients with other mutations and without mutations, the second-generation TKI should be selected according to the patient's medical history, while the third-generation TKIs should be selected for mutations that are insensitive to the second-generation TKIs, such as T315I mutation that is sensitive to ponatinib. Due to different BCR-ABL mutations in patients with different sensitivity to the second and third-generation TKIs, this paper will review the latest research progress of the efficacy of the second and third-generation TKIs in CML patients with BCR-ABL mutations.
Humans
;
Antineoplastic Agents/pharmacology*
;
Dasatinib/pharmacology*
;
Drug Resistance, Neoplasm/genetics*
;
Fusion Proteins, bcr-abl/genetics*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Mutation
;
Protein Kinase Inhibitors/therapeutic use*
3.The Role and Mechanism of MiR-451 in Multidrug Resistance of Leukemia Cell Line K562/A02.
Yan-Li FENG ; Bao-Xiong SU ; Fan-Mei GE ; Chong-Wen DAI
Journal of Experimental Hematology 2023;31(3):685-692
OBJECTIVE:
To detect the differential expressions of miR-451, ABCB1 and ABCC2 in drug-sensitive leukemia cell line K562 and drug-resistant cell line K562/A02, and explore the regulatory relationship between miR-451 and the expressions of ABCB1 and ABCC2 , and the mechanism of miR-451 involved in drug resistance in leukemia.
METHODS:
CCK-8 assay was used to detect the drug resistance of K562/A02 and K562 cells. Quantitative Real-time PCR (qRT-PCR) was used to verify the differential expressions of miR-451 in K562 and K562/A02 cells. MiR-451 mimic and negative control (miR-NC), miR-451 inhibitor and negative control (miR-inNC) were transfected into K562 and K562/A02 cells respectively, then qRT-PCR and Western blot were used to detect the expression levels of mRNA and protein of ABCB1 and ABCC2 in K562 and K562/A02 cells and the transfected groups.
RESULTS:
The drug resistance of K562/A02 cells to adriamycin was 177 times higher than that of its parent cell line K562. Compared with K562 cells, the expression of miR-451 in K562/A02 cells was significantly higher (P <0.001), and the mRNA and protein expression levels of ABCB1 and ABCC2 in K562/A02 cells were significantly higher than those in K562 cells (P <0.001). After transfected with miR-451 inhibitor, the expression of miR-451 was significantly down-regulated in K562/A02 cells (P <0.001), the sensitivity to chemotherapy drugs was significantly enhanced (P <0.05), and the mRNA and protein expressions of ABCB1 and ABCC2 were significantly decreased (P <0.01). After transfected with miR-451 mimic, the expression of miR-451 was significantly upregulated in K562 cells (P <0.001), and the mRNA and protein expressions of ABCB1 and ABCC2 were significantly increased (P <0.01).
CONCLUSION
There are significant differences in the expressions of miR-451, ABCB1 and ABCC2 between the drug-sensitive leukemia cell line K562 and drug-resistant cell line K562/A02, which suggests that miR-451 may affect the drug resistance of leukemia cells by regulating the expression of ABCB1 and ABCC2.
Humans
;
K562 Cells
;
Drug Resistance, Neoplasm/genetics*
;
Drug Resistance, Multiple/genetics*
;
Doxorubicin/pharmacology*
;
MicroRNAs/genetics*
;
Leukemia/genetics*
;
RNA, Messenger
4.Cigarette Smoke Induces Gefitinib Resistance in NSCLC Cells via ROS/Sirt3/SOD2 Pathway.
Yawan ZI ; Ke LIAO ; Hong CHEN
Chinese Journal of Lung Cancer 2023;26(4):245-256
BACKGROUND:
Epidermal growth factor receptor (EGFR) gene mutations are the most common driver mutations in non-small cell lung cancer (NSCLC). To prolong the survival of the patients, EGFR tyrosine kinase inhibitors (TKIs) resistance in NSCLC is a major challenge that needs to be addressed urgently, and this study focuses on investigating the mechanism of cigarette smoke (CS) induced Gefitinib resistance in NSCLC.
METHODS:
PC-9 and A549 cells were cultured in vitro and treated with 1 µmol/L Gefitinib for 4 h and 10% cigarette smoke extract (CSE) for 48 h. Western blot was used to detect Sirtuin 3 (Sirt3) and superoxide dismutase 2 (SOD2) protein expressions; DCFH-DA probe was used to detect intracellular reactive oxygen species (ROS); CCK-8 kit was used to detect cell activity, and EdU was used to detect cell proliferation ability. Sirt3 overexpression plasmid (OV-Sirt3) was transfected in PC-9 and A549 cells and treated with 1 µmol/L Gefitinib for 4 h and 10% CSE for 48 h after N-acetylcysteine (NAC) action. The expressions of Sirt3 and SOD2 were detected by Western blot; the ROS level in the cells was detected by DCFH-DA probe, and the cell activity was detected by CCK-8.
RESULTS:
CSE induced an increase in the 50% inhibitory concentration (IC50) of both PC-9 and A549 cells to Gefitinib (P<0.01) and enhanced the proliferation of PC-9 and A549 cells, suggesting that CS induced Gefitinib resistance in NSCLC. ROS was involved in CSE-induced Gefitinib resistance (P<0.05). CSE induced low expressions of Sirt3 and SOD2 (P<0.01), and Sirt3/SOD2 was associated with poor prognosis in lung cancer patients (P<0.05). OV-Sirt3 in PC-9 and A549 cells reversed CSE-induced Gefitinib resistance (P<0.05) and significantly reduced ROS production. NAC reversed CSE-induced Gefitinib resistance in PC-9 and A549 cells (P<0.05).
CONCLUSIONS
The ROS/Sirt3/SOD2 pathway is involved in CS-induced Gefitinib resistance in NSCLC.
Humans
;
Gefitinib/therapeutic use*
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Sirtuin 3/therapeutic use*
;
Lung Neoplasms/metabolism*
;
Reactive Oxygen Species/therapeutic use*
;
Antineoplastic Agents/therapeutic use*
;
Cigarette Smoking
;
Sincalide/therapeutic use*
;
ErbB Receptors/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Cell Line, Tumor
5.Targeting microRNA-125b inhibited the metastasis of Alisertib resistance cells through mediating p53 pathway.
Fu Li YANG ; Xin CHEN ; Fei ZHENG ; Xiang ye LIU ; Na SUN ; Rong Qing LI ; Zhen JIANG ; Jing HAN ; Jing YANG
Chinese Journal of Oncology 2023;45(6):499-507
Objective: To clarify the mechanisms involvement in Alisertib-resistant colorectal cells and explore a potential target to overcome Alisertib-resistance. Methods: Drug-resistant colon cancer cell line (named as HCT-8-7T cells) was established and transplanted into immunodeficient mice. The metastasis in vivo were observed. Proliferation and migration of HCT-8-7T cells and their parental cells were assessed by colony formation and Transwell assay, respectively. Glycolytic capacity and glutamine metabolism of cells were analyzed by metabolism assays. The protein and mRNA levels of critical factors which are involved in mediating glycolysis and epithelial-mesenchymal transition (EMT) were examined by western blot and reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR), respectively. Results: In comparison with the mice transplanted with HCT-8 cells, which were survival with limited metastatic tumor cells in organs, aggressive metastases were observed in liver, lung, kidney and ovary of HCT-8-7T transplanted mice (P<0.05). The levels of ATP [(0.10±0.01) mmol/L], glycolysis [(81.77±8.21) mpH/min] and the capacity of glycolysis [(55.50±3.48) mpH/min] in HCT-8-7T cells were higher than those of HCT-8 cells [(0.04±0.01) mmol/L, (27.77±2.55) mpH/min and(14.00±1.19) mpH/min, respectively, P<0.05]. Meanwhile, the levels of p53 protein and mRNA in HCT-8-7T cells were potently decreased as compared to that in HCT-8 cells (P<0.05). However, the level of miRNA-125b (2.21±0.12) in HCT-8-7T cells was significantly elevated as compared to that in HCT-8 cells (1.00±0.00, P<0.001). In HCT-8-7T cells, forced-expression of p53 reduced the colon number (162.00±24.00) and the migration [(18.53±5.67)%] as compared with those in cells transfected with control vector [274.70±40.50 and (100.00±29.06)%, P<0.05, respectively]. Similarly, miR-125b mimic decreased the glycolysis [(25.28±9.51) mpH/min] in HCT-8-7T cells as compared with that [(54.38±12.70)mpH/min, P=0.003] in HCT-8-7T cells transfected with control. Meanwhile, in comparison with control transfected HCT-8-7T cells, miR-125b mimic also significantly led to an increase in the levels of p53 and β-catenin, in parallel with a decrease in the levels of PFK1 and HK1 in HCT-8-7T cells (P<0.05). Conclusions: Silencing of p53 by miR-125b could be one of the mechanisms that contributes to Alisertib resistance. Targeting miR-125b could be a strategy to overcome Alisertib resistance.
Animals
;
Female
;
Mice
;
Azepines
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
MicroRNAs/genetics*
;
RNA, Messenger
;
Tumor Suppressor Protein p53/genetics*
;
Humans
;
Drug Resistance, Neoplasm
6.Effect and Mechanism of Atorvastatin on Reversing Drug Resistance in Leukemia by Regulating Glycolysis through PTEN/mTOR Pathway.
Journal of Experimental Hematology 2023;31(1):38-44
OBJECTIVE:
To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.
METHODS:
HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.
RESULTS:
CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.
CONCLUSION
Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.
Humans
;
Atorvastatin/pharmacology*
;
PTEN Phosphohydrolase/pharmacology*
;
Sincalide/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Leukemia, Promyelocytic, Acute/drug therapy*
;
Doxorubicin/pharmacology*
;
Apoptosis
;
RNA, Small Interfering/pharmacology*
;
Glycolysis
;
Glucose/therapeutic use*
;
Cell Proliferation
7.Bone Marrow Adipocytes Promote the Survival of Multiple Myeloma Cells and Up-Regulate Their Chemoresistance.
Xiao-Qian WEI ; Yang-Min ZHANG ; Yu SUN ; Hua-Yu LING ; Yuan-Ning HE ; Jin-Xiang FU
Journal of Experimental Hematology 2023;31(1):154-161
OBJECTIVE:
To investigate the effect of adipocytes in the bone marrow microenvironment of patients with multiple myeloma (MM) on the pathogenesis of MM.
METHODS:
Bone marrow adipocytes (BMA) in bone marrow smears of health donors (HD) and newly diagnosed MM (ND-MM) patients were evaluated with oil red O staining. The mesenchymal stem cells (MSC) from HD and ND-MM patients were isolated, and in vitro co-culture assay was used to explore the effects of MM cells on the adipogenic differentiation of MSC and the role of BMA in the survival and drug resistance of MM cells. The expression of adipogenic/osteogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4, FASN and ALP both in MSC and MSC-derived adipocytes was determined with real-time quantitative PCR. The Western blot was employed to detect the expression levels of IL-6, IL-10, SDF-1α, TNF-α and IGF-1 in the supernatant with or without PPAR-γ inhibitor.
RESULTS:
The results of oil red O staining of bone marrow smears showed that BMA increased significantly in patients of ND-MM compared with the normal control group, and the BMA content was related to the disease status. The content of BMA decreased in the patients with effective chemotherapy. MM cells up-regulated the expression of MSC adipogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4 and FASN, but the expression of osteogenic differentiation-related gene ALP was significantly down-regulated. This means that the direct consequence of the interaction between MM cells and MSC in the bone marrow microenvironment is to promote the differentiation of MSC into adipocytes at the expense of osteoblasts, and the cytokines detected in supernatant changed. PPAR-γ inhibitor G3335 could partially reverse the release of cytokines by BMA. Those results confirmed that BMA regulated the release of cytokines via PPAR-γ signal, and PPAR-γ inhibitor G3335 could distort PPAR-γ mediated BMA maturation and cytokines release. The increased BMA and related cytokines effectively promoted the proliferation, migration and drug resistance of MM cells.
CONCLUSION
The BMA and its associated cytokines are the promoting factors in the survival, proliferation and migration of MM cells. BMA can protect MM cells from drug-induced apoptosis and plays an important role in MM treatment failure and disease progression.
Humans
;
Osteogenesis/genetics*
;
Bone Marrow/metabolism*
;
Multiple Myeloma/metabolism*
;
Drug Resistance, Neoplasm
;
Peroxisome Proliferator-Activated Receptors/pharmacology*
;
Cell Differentiation
;
Adipogenesis
;
Cytokines/metabolism*
;
Adipocytes/metabolism*
;
Bone Marrow Cells/metabolism*
;
Cells, Cultured
;
PPAR gamma/pharmacology*
;
Tumor Microenvironment
8.Research Progress of DNA Methylation in Cisplatin Resistance in Lung Cancer.
Chinese Journal of Lung Cancer 2023;26(1):52-58
As one of the most common malignant tumors, lung cancer poses a serious threat to human life and health. The platinum-based drug cisplatin (DDP) is used as the first-line treatment for lung cancer. The poor prognosis of lung cancer is mostly due to developed resistance to cisplatin, which poses a serious treatment challenge. The mechanism of cisplatin resistance is complex and unclear. Numerous studies have shown that DNA methylation plays a crucial role in the emergence of lung cancer cisplatin resistance. DNA hypermethylation results in the deactivation of numerous drug resistance genes and tumor suppressor genes through a change in chromatin conformation. Finding new therapeutic targets and indicators to predict the therapeutic effect can be aided by elucidating the complex mechanism. In order to discover novel strategies to overcome cisplatin resistance in lung cancer, this paper discusses DNA methylation-mediated cisplatin resistance and offers an overview of current demethylation procedures.
.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Cell Line, Tumor
;
Cisplatin/therapeutic use*
;
DNA Methylation
;
Drug Resistance, Neoplasm/genetics*
;
Gene Expression Regulation, Neoplastic
;
Lung Neoplasms/pathology*
9.Enzalutamide and olaparib synergistically suppress castration-resistant prostate cancer progression by promoting apoptosis through inhibiting nonhomologous end joining pathway.
Hui-Yu DONG ; Pan ZANG ; Mei-Ling BAO ; Tian-Ren ZHOU ; Chen-Bo NI ; Lei DING ; Xu-Song ZHAO ; Jie LI ; Chao LIANG
Asian Journal of Andrology 2023;25(6):687-694
Recent studies revealed the relationship among homologous recombination repair (HRR), androgen receptor (AR), and poly(adenosine diphosphate-ribose) polymerase (PARP); however, the synergy between anti-androgen enzalutamide (ENZ) and PARP inhibitor olaparib (OLA) remains unclear. Here, we showed that the synergistic effect of ENZ and OLA significantly reduced proliferation and induced apoptosis in AR-positive prostate cancer cell lines. Next-generation sequencing followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed the significant effects of ENZ plus OLA on nonhomologous end joining (NHEJ) and apoptosis pathways. ENZ combined with OLA synergistically inhibited the NHEJ pathway by repressing DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and X-ray repair cross complementing 4 (XRCC4). Moreover, our data showed that ENZ could enhance the response of prostate cancer cells to the combination therapy by reversing the anti-apoptotic effect of OLA through the downregulation of anti-apoptotic gene insulin-like growth factor 1 receptor ( IGF1R ) and the upregulation of pro-apoptotic gene death-associated protein kinase 1 ( DAPK1 ). Collectively, our results suggested that ENZ combined with OLA can promote prostate cancer cell apoptosis by multiple pathways other than inducing HRR defects, providing evidence for the combined use of ENZ and OLA in prostate cancer regardless of HRR gene mutation status.
Male
;
Humans
;
Prostatic Neoplasms, Castration-Resistant/genetics*
;
Drug Resistance, Neoplasm/genetics*
;
Cell Line, Tumor
;
Receptors, Androgen/genetics*
;
Nitriles
;
Apoptosis
10.The effect of PLK1 inhibitor in osimertinib resistant non-small cell lung carcinoma cells.
Xiaoyang DAI ; Xiangning LIU ; Fujing GE ; Hongdao ZHU ; Churun ZHENG ; Fangjie YAN ; Bo YANG
Journal of Zhejiang University. Medical sciences 2023;52(5):558-566
OBJECTIVES:
To investigate the effects of PLK1 inhibitors on osimertinib-resistant non-small cell lung carcinoma (NSCLC) cells and the anti-tumor effect combined with osimertinib.
METHODS:
An osimertinib resistant NCI-H1975 cell line was induced by exposure to gradually increasing drug concentrations. Osimertinib-resistant cells were co-treated with compounds from classical tumor pathway inhibitor library and osimertinib to screen for compounds with synergistic effects with osimertinib. The Gene Set Enrichment Analysis (GSEA) was used to investigate the activated signaling pathways in osimertinib-resistant cells; sulforhodamine B (SRB) staining was used to investigate the effect of PLK1 inhibitors on osimertinib-resistant cells and the synergistic effect of PLK1 inhibitors combined with osimertinib.
RESULTS:
Osimertinib-resistance in NCI-H1975 cell (resistance index=43.45) was successfully established. The PLK1 inhibitors GSK 461364 and BI 2536 had synergistic effect with osimertinib. Compared with osimertinib-sensitive cells, PLK1 regulatory pathway and cell cycle pathway were significantly activated in osimertinib-resistant cells. In NSCLC patients with epidermal growth factor receptor mutations treated with osimertinib, PLK1 mRNA levels were negatively correlated with progression free survival of patients (R=-0.62, P<0.05), indicating that excessive activation of PLK1 in NSCLC cells may cause cell resistant to osimertinib. Further in vitro experiments showed that IC50 of PLK1 inhibitors BI 6727 and GSK 461364 in osimertinib-resistant cells were lower than those in sensitive ones. Compared with the mono treatment of osimertinib, PLK1 inhibitors combined with osimertinib behaved significantly stronger effect on the proliferation of osimertinib-resistant cells.
CONCLUSIONS
PLK1 inhibitors have a synergistic effect with osimertinib on osimertinib-resistant NSCLC cells which indicates that they may have potential clinical value in the treatment of NSCLC patients with osimertinib resistance.
Humans
;
Carcinoma, Non-Small-Cell Lung
;
Lung Neoplasms
;
ErbB Receptors/therapeutic use*
;
Drug Resistance, Neoplasm/genetics*
;
Mutation
;
Cell Line, Tumor

Result Analysis
Print
Save
E-mail