1.Evaluation of Microsphere-based xMAP Test for gyrA Mutation Identification in Mycobacterium Tuberculosis.
Xi Chao OU ; Bing ZHAO ; Ze Xuan SONG ; Shao Jun PEI ; Sheng Fen WANG ; Wen Cong HE ; Chun Fa LIU ; Dong Xin LIU ; Rui Da XING ; Hui XIA ; Yan Lin ZHAO
Biomedical and Environmental Sciences 2023;36(4):384-387
2.Genotyping Characteristics of Human Fecal Escherichia coli and Their Association with Multidrug Resistance in Miyun District, Beijing.
Wei Wei ZHANG ; Xiao Lin ZHU ; Le Le DENG ; Ya Jun HAN ; Zhuo Wei LI ; Jin Long WANG ; Yong Liang CHEN ; Ao Lin WANG ; Er Li TIAN ; Bin CHENG ; Lin Hua XU ; Yi Cong CHEN ; Li Li TIAN ; Guang Xue HE
Biomedical and Environmental Sciences 2023;36(5):406-417
OBJECTIVE:
To explore the genotyping characteristics of human fecal Escherichia coli( E. coli) and the relationships between antibiotic resistance genes (ARGs) and multidrug resistance (MDR) of E. coli in Miyun District, Beijing, an area with high incidence of infectious diarrheal cases but no related data.
METHODS:
Over a period of 3 years, 94 E. coli strains were isolated from fecal samples collected from Miyun District Hospital, a surveillance hospital of the National Pathogen Identification Network. The antibiotic susceptibility of the isolates was determined by the broth microdilution method. ARGs, multilocus sequence typing (MLST), and polymorphism trees were analyzed using whole-genome sequencing data (WGS).
RESULTS:
This study revealed that 68.09% of the isolates had MDR, prevalent and distributed in different clades, with a relatively high rate and low pathogenicity. There was no difference in MDR between the diarrheal (49/70) and healthy groups (15/24).
CONCLUSION
We developed a random forest (RF) prediction model of TEM.1 + baeR + mphA + mphB + QnrS1 + AAC.3-IId to identify MDR status, highlighting its potential for early resistance identification. The causes of MDR are likely mobile units transmitting the ARGs. In the future, we will continue to strengthen the monitoring of ARGs and MDR, and increase the number of strains to further verify the accuracy of the MDR markers.
Humans
;
Escherichia coli/genetics*
;
Escherichia coli Infections/epidemiology*
;
Multilocus Sequence Typing
;
Genotype
;
Beijing
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
Diarrhea
;
Microbial Sensitivity Tests
3.Advances in genomics of multi-drug resistant Stenotrophomonas.
Yuhang TANG ; Shiqi FANG ; Linlin XIE ; Chao SUN ; Shanshan LI ; Aiping ZHOU ; Guangxiang CAO ; Jun LI
Chinese Journal of Biotechnology 2023;39(4):1314-1331
Stenotrophomonas species are non-fermentative Gram-negative bacteria that are widely distributed in environment and are highly resistant to numerous antibiotics. Thus, Stenotrophomonas serves as a reservoir of genes encoding antimicrobial resistance (AMR). The detection rate of Stenotrophomonas is rapidly increasing alongside their strengthening intrinsic ability to tolerate a variety of clinical antibiotics. This review illustrated the current genomics advances of antibiotic resistant Stenotrophomonas, highlighting the importance of precise identification and sequence editing. In addition, AMR diversity and transferability have been assessed by the developed bioinformatics tools. However, the working models of AMR in Stenotrophomonas are cryptic and urgently required to be determined. Comparative genomics is envisioned to facilitate the prevention and control of AMR, as well as to gain insights into bacterial adaptability and drug development.
Stenotrophomonas/genetics*
;
Drug Resistance, Bacterial/genetics*
;
Anti-Bacterial Agents/pharmacology*
;
Gram-Negative Bacteria
;
Genomics
;
Microbial Sensitivity Tests
4.Distribution and Drug Sensitivity Analysis of Pathogenic Bacteria Isolated from Patients in Hematology Department.
Li QIAN ; Wen-Ying XIA ; Fang NI ; Xiao-Hui ZHANG
Journal of Experimental Hematology 2023;31(2):568-574
OBJECTIVE:
To investigate the distribution and drug sensitivity of pathogenic bacteria isolated from patients in hematology department, in order to provide evidence for rational use of antibiotics in clinic.
METHODS:
The distribution of pathogenic bacteria and drug sensitivity data of patients in the hematology department of The First Affiliated Hospital of Nanjing Medical University from 2015 to 2020 were retrospectively analyzed, and the pathogens isolated from different specimen types were compared.
RESULTS:
A total of 2 029 strains of pathogenic bacteria were isolated from 1 501 patients in the hematology department from 2015 to 2020, and 62.2% of which were Gram-negative bacilli, mainly Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii. Gram-positive coccus accounted for 18.8%, mainly Coagulase-negative staphylococcus (CoNS) and Staphylococcus aureus. Fungi (17.4%) were mainly candida. The 2 029 strains were mainly isolated from respiratory tract (35.1%), blood (31.8%) and urine (19.2%) specimens. Gram-negative bacilli were the main pathogenic bacteria in different specimen types (>60%). K. pneumoniae, S. maltophilia and A. baumannii were the most common pathogens in respiratory specimens, E. coli, CoNS, K. pneumoniae and P. aeruginosa were common in blood samples, and E. coli and Enterococcus were most common in urine samples. Enterobacteriaceae had the highest susceptibility to amikacin and carbapenems (>90.0%), followed by piperacillin/tazobactam. P. aeruginosa strains had high sensitivity to antibiotics except aztreonam (<50.0%). The susceptibility of A. baumannii to multiple antibiotics was less than 70.0%. The antimicrobial resistance rates of E. coli and K. pneumoniae in respiratory tract specimens were higher than those in blood specimens and urine specimens.
CONCLUSION
Gram-negative bacilli are the main pathogenic bacteria isolated from patients in hematology department. The distribution of pathogens is different in different types of specimens, and the sensitivity of each strain to antibiotics is different. The rational use of antibiotics should be based on different parts of infection to prevent the occurrence of drug resistance.
Humans
;
Escherichia coli
;
Retrospective Studies
;
Bacteria
;
Anti-Bacterial Agents/therapeutic use*
;
Gram-Negative Bacteria
;
Drug Resistance
;
Pseudomonas aeruginosa
;
Hematology
5.A single-center study on the distribution and antibiotic resistance of pathogens causing bloodstream infection in patients with hematological malignancies.
Lin Jing CAI ; Xiao Lei WEI ; Yong Qiang WEI ; Xu Tao GUO ; Xue Jie JIANG ; Yu ZHANG ; Guo pan YU ; Min DAI ; Jie Yu YE ; Hong Sheng ZHOU ; Dan XU ; Fen HUANG ; Zhi Ping FAN ; Na XU ; Peng Cheng SHI ; Li XUAN ; Ru FENG ; Xiao Li LIU ; Jing SUN ; Qi Fa LIU
Chinese Journal of Hematology 2023;44(6):479-483
Objective: To study the incidence of bloodstream infections, pathogen distribution, and antibiotic resistance profile in patients with hematological malignancies. Methods: From January 2018 to December 2021, we retrospectively analyzed the clinical characteristics, pathogen distribution, and antibiotic resistance profiles of patients with malignant hematological diseases and bloodstream infections in the Department of Hematology, Nanfang Hospital, Southern Medical University. Results: A total of 582 incidences of bloodstream infections occurred in 22,717 inpatients. From 2018 to 2021, the incidence rates of bloodstream infections were 2.79%, 2.99%, 2.79%, and 2.02%, respectively. Five hundred ninety-nine types of bacteria were recovered from blood cultures, with 487 (81.3%) gram-negative bacteria, such as Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. Eighty-one (13.5%) were gram-positive bacteria, primarily Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecium, whereas the remaining 31 (5.2%) were fungi. Enterobacteriaceae resistance to carbapenems, piperacillin/tazobactam, cefoperazone sodium/sulbactam, and tigecycline were 11.0%, 15.3%, 15.4%, and 3.3%, with a descending trend year on year. Non-fermenters tolerated piperacillin/tazobactam, cefoperazone sodium/sulbactam, and quinolones at 29.6%, 13.3%, and 21.7%, respectively. However, only two gram-positive bacteria isolates were shown to be resistant to glycopeptide antibiotics. Conclusions: Bloodstream pathogens in hematological malignancies were broadly dispersed, most of which were gram-negative bacteria. Antibiotic resistance rates vary greatly between species. Our research serves as a valuable resource for the selection of empirical antibiotics.
Humans
;
Bacteremia/epidemiology*
;
Cefoperazone
;
Sulbactam
;
Retrospective Studies
;
Drug Resistance, Bacterial
;
Microbial Sensitivity Tests
;
Hematologic Neoplasms
;
Sepsis
;
Anti-Bacterial Agents/pharmacology*
;
Gram-Negative Bacteria
;
Gram-Positive Bacteria
;
Piperacillin, Tazobactam Drug Combination
;
Escherichia coli
6.Drug resistance and genomic characteristics of Salmonella enterica serovar London from clinical and food sources in Hangzhou City from 2017 to 2021.
Zhi Bei ZHENG ; Hua YU ; Wei ZHENG ; Qi CHEN ; Xiu Qin LOU ; Xiao Dong LIU ; Hao Qiu WANG ; Jing Cao PAN
Chinese Journal of Preventive Medicine 2023;57(4):508-515
Objective: To analyze the drug resistance and genomic characteristics of Salmonella enterica serovar London isolated from clinical and food sources in Hangzhou City from 2017 to 2021. Methods: A total of 91 Salmonella enterica serovar London strains isolated from Hangzhou City from 2017 to 2021 were analyzed for drug susceptibility, pulsed field gel electrophoresis (PFGE) typing and whole genome sequencing. Multilocus sequence typing (MLST), core genome multilocus sequence typing (cgMLST) and detection of drug resistance genes were performed by using the sequencing data. Phylogenetic analysis was conducted to compare the 91 genomes from Hangzhou City with 347 genomes from public databases. Results: No significant difference in the drug resistance rate was observed between clinical strains and food strains to 18 drugs in Hangzhou City(all P>0.05), and the multidrug resistance (MDR) rate was 75.8% (69/91). Most strains were resistant to 7 drug classes simultaneously. One strain was resistant to Polymyxin E as well as positive for mcr-1.1, and 50.5% (46/91) of the strains were resistant to Azithromycin and were positive for mph(A). All 91 Salmonella enterica serovar London strains were ST155, which were subdivided into 44 molecular types by PFGE and 82 types by cgMLST. Phylogenetic analysis showed that most strains from Hangzhou City (83/91) were clustered together, and a small number of human isolates from Europe, North America and pork isolates from Hubei and Shenzhen were mixed in the cluster. Other strains from Hangzhou City (8/91) were closely related to strains from Europe, America and Southeast Asia. Strains isolated from pork were the most closely related to clinical strains. Conclusion: The epidemic of Salmonella enterica serovar London in Hangzhou City is mainly caused by the spread of ST155 strains, which is mainly transmitted locally. At the same time, cross-region transmission to Europe, North America, Southeast Asia, and other provinces and cities in China may also occur. There is no significant difference in the drug resistance rate between clinical strains and food strains, and a high level of MDR is found in the strains. Clinical infection of Salmonella enterica serovar London may be closely related to pork consumption in Hangzhou City.
Humans
;
Salmonella enterica/genetics*
;
Serogroup
;
Anti-Bacterial Agents/pharmacology*
;
Multilocus Sequence Typing
;
Cities
;
London
;
Clonidine
;
Phylogeny
;
Genomics
;
Drug Resistance
;
Electrophoresis, Gel, Pulsed-Field
;
Microbial Sensitivity Tests
7.Antimicrobial resistance and plasmid-mediated colistin resistance mechanism of diarrheagenic Escherichia coli recovered from foods in parts of China in 2020.
Yu Jie HU ; Yang XIAO ; Shuang Jia DONG ; Jian Yun ZHAO ; Hui LI ; Da Jin YANG ; Yin Ping DONG ; Jin XU ; Feng Qin LI
Chinese Journal of Preventive Medicine 2023;57(4):557-565
Objective: To investigate the antimicrobial resistance of food-borne diarrheagenic Escherichia coli (DEC) and the prevalence of mcr genes that mediates mobile colistin resistance in parts of China, 2020. Methods: For 91 DEC isolates recovered from food sources collected from Fujian province, Hebei province, Inner Mongolia Autonomous Region and Shanghai city in 2020, Vitek2 Compact biochemical identification and antimicrobial susceptibility testing platform was used for the detection of antimicrobial susceptibility testing (AST) against to 18 kinds of antimicrobial compounds belonging to 9 categories, and multi-polymerase chain reaction (mPCR) was used to detect the mcr-1-mcr-9 genes, then a further AST, whole genome sequencing (WGS) and bioinformatics analysis were platformed for these DEC isolates which were PCR positive for mcr genes. Results: Seventy in 91 isolates showed different antimicrobial resistance levels to the drugs tested with a resistance rate of 76.92%. The isolates showed the highest antimicrobial resistance rates to ampicillin (69.23%, 63/91) and trimethoprim-sulfamethoxazole (59.34%, 54/91), respectively. The multiple drug-resistant rate was 47.25% (43/91). Two mcr-1 gene and ESBL (extended-spectrum beta-lactamase) positive EAEC (enteroaggregative Escherichia coli) strains were detected. One of them was identified as serotype of O11:H6, which showed a resistance profile to 25 tested drugs referring to 10 classes, and 38 drug resistance genes were predicted by genome analysis. The other one was O16:H48 serotype, which was resistant to 21 tested drugs belonging to 7 classes and carried a new variant of mcr-1 gene (mcr-1.35). Conclusion: An overall high-level antimicrobial resistance was found among foodborne DEC isolates recovered from parts of China in 2020, and so was the MDR (multi-drug resistance) condition. MDR strains carrying multiple resistance genes such as mcr-1 gene were detected, and a new variant of mcr-1 gene was also found. It is necessary to continue with a dynamic monitoring on DEC contamination and an ongoing research into antimicrobial resistance mechanisms.
Humans
;
Colistin/pharmacology*
;
Anti-Bacterial Agents/pharmacology*
;
Escherichia coli Infections/epidemiology*
;
Escherichia coli Proteins/genetics*
;
Drug Resistance, Bacterial/genetics*
;
China/epidemiology*
;
Escherichia coli
;
Plasmids/genetics*
;
Microbial Sensitivity Tests
8.Study of the urban-impact on microbial communities and their virulence factors and antibiotic resistance genomes in the Nandu River, Haikou.
Yu Feng FAN ; Zhen Peng LI ; Xiao Jie YU ; Zhe LI ; Hai Jian ZHOU ; Ya Lin ZHANG ; Xiao Ting GAN ; De HUA ; Xin LU ; Biao KAN
Chinese Journal of Epidemiology 2023;44(6):974-981
Objective: To explore the changes in bacterial community structure, antibiotic resistance genome, and pathogen virulence genome in river water before and after the river flowing through Haikou City and their transmission and dispersal patterns and to reveal anthropogenic disturbance's effects on microorganisms and resistance genes in the aquatic environment. Methods: The Nandu River was divided into three study areas: the front, middle and rear sections from the upstream before it flowed through Haikou City to the estuary. Three sampling sites were selected in each area, and six copies of the sample were collected in parallel at each site and mixed for 3 L per sample. Microbial community structure, antibiotic resistance, virulence factors, and mobile genetic elements were analyzed through bioinformatic data obtained by metagenomic sequencing and full-length sequencing of 16S rRNA genes. Variations in the distribution of bacterial communities between samples and correlation of transmission patterns were analyzed by principal co-ordinates analysis, procrustes analysis, and Mantel test. Results: As the river flowed through Haikou City, microbes' alpha diversity gradually decreased. Among them, Proteobacteria dominates in the bacterial community in the front, middle, and rear sections, and the relative abundance of Proteobacteria in the middle and rear sections was higher than that in the front segment. The diversity and abundance of antibiotic resistance genes, virulence factors, and mobile genetic elements were all at low levels in the front section and all increased significantly after flow through Haikou City. At the same time, horizontal transmission mediated by mobile genetic elements played a more significant role in the spread of antibiotic-resistance genes and virulence factors. Conclusions: Urbanization significantly impacts river bacteria and the resistance genes, virulence factors, and mobile genetic elements they carry. The Nandu River in Haikou flows through the city, receiving antibiotic-resistant and pathogen-associated bacteria excreted by the population. In contrast, antibiotic-resistant genes and virulence factors are enriched in bacteria, which indicates a threat to environmental health and public health. Comparison of river microbiomes and antibiotic resistance genomes before and after flow through cities is a valuable early warning indicator for monitoring the spread of antibiotic resistance.
Humans
;
Rivers
;
Virulence Factors/genetics*
;
RNA, Ribosomal, 16S/genetics*
;
Microbiota/genetics*
;
Anti-Bacterial Agents
;
Drug Resistance, Microbial/genetics*
9.Clinical value of the MeltPro MTB assays in detection of drug-resistant tuberculosis in paraffin-embedded tissues.
Jia Lu CHE ; Zi Chen LIU ; Kun LI ; Wei Li DU ; Dan ZHAO ; Jing MU ; Yu Jie DONG ; Nan Ying CHE
Chinese Journal of Pathology 2023;52(5):466-471
Objective: To evaluate the clinical value of the MeltPro MTB assays in the diagnosis of drug-resistant tuberculosis. Methods: A cross-sectional study design was used to retrospectively collect all 4 551 patients with confirmed tuberculosis between January 2018 and December 2019 at Beijing Chest Hospital, Capital Medical University. Phenotypic drug sensitivity test and GeneXpert MTB/RIF (hereafter referred to as "Xpert") assay were used as gold standards to analyze the accuracy of the probe melting curve method. The clinical value of this technique was also evaluated as a complementary method to conventional assays of drug resistance to increase the detective rate of drug-resistant tuberculosis. Results: By taking the phenotypic drug susceptibility test as the gold standard, the sensitivity of the MeltPro MTB assays to detect resistance to rifampicin, isoniazid, ethambutol and fluoroquinolone was 14/15, 95.7%(22/23), 2/4 and 8/9,respectively; and the specificity was 92.0%(115/125), 93.2%(109/117), 90.4%(123/136) and 93.9%(123/131),respectively; the overall concordance rate was 92.1%(95%CI:89.6%-94.1%),and the Kappa value of the consistency test was 0.63(95%CI:0.55-0.72).By taking the Xpert test results as the reference, the sensitivity of this technology to the detection of rifampicin resistance was 93.6%(44/47), the specificity was100%(310/310), the concordance rate was 99.2%(95%CI:97.6%-99.7%), and the Kappa value of the consistency test was 0.96(95%CI:0.93-0.99). The MeltPro MTB assays had been used in 4 551 confirmed patients; the proportion of patients who obtained effective drug resistance results increased from 83.3% to 87.8%(P<0.01); and detection rate of rifampicin, isoniazid, ethambutol, fluoroquinolone resistance, multidrug and pre-extensive drug resistance cases were increased by 3.2%, 14.7%, 22.2%, 13.7%, 11.2% and 12.5%, respectively. Conclusion: The MeltPro MTB assays show satisfactory accuracy in the diagnosis of drug-resistant tuberculosis. This molecular pathological test is an effective complementary method in improving test positivity of drug-resistant tuberculosis.
Humans
;
Rifampin/therapeutic use*
;
Antibiotics, Antitubercular/therapeutic use*
;
Mycobacterium tuberculosis
;
Ethambutol/pharmacology*
;
Isoniazid/pharmacology*
;
Paraffin Embedding
;
Retrospective Studies
;
Cross-Sectional Studies
;
Drug Resistance, Bacterial
;
Sensitivity and Specificity
;
Tuberculosis, Multidrug-Resistant/drug therapy*
10.The past, present and future of tuberculosis treatment.
Kefan BI ; Dan CAO ; Cheng DING ; Shuihua LU ; Hongzhou LU ; Guangyu ZHANG ; Wenhong ZHANG ; Liang LI ; Kaijin XU ; Lanjuan LI ; Ying ZHANG
Journal of Zhejiang University. Medical sciences 2023;51(6):657-668
Tuberculosis (TB) is an ancient infectious disease. Before the availability of effective drug therapy, it had high morbidity and mortality. In the past 100 years, the discovery of revolutionary anti-TB drugs such as streptomycin, isoniazid, pyrazinamide, ethambutol and rifampicin, along with drug combination treatment, has greatly improved TB control globally. As anti-TB drugs were widely used, multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis emerged due to acquired genetic mutations, and this now presents a major problem for effective treatment. Genes associated with drug resistance have been identified, including katG mutations in isoniazid resistance, rpoB mutations in rifampin resistance, pncA mutations in pyrazinamide resistance, and gyrA mutations in quinolone resistance. The major mechanisms of drug resistance include loss of enzyme activity in prodrug activation, drug target alteration, overexpression of drug target, and overexpression of the efflux pump. During the disease process, Mycobacterium tuberculosis may reside in different microenvironments where it is expose to acidic pH, low oxygen, reactive oxygen species and anti-TB drugs, which can facilitate the development of non-replicating persisters and promote bacterial survival. The mechanisms of persister formation may include toxin-antitoxin (TA) modules, DNA protection and repair, protein degradation such as trans-translation, efflux, and altered metabolism. In recent years, the use of new anti-TB drugs, repurposed drugs, and their drug combinations has greatly improved treatment outcomes in patients with both drug-susceptible TB and MDR/XDR-TB. The importance of developing more effective drugs targeting persisters of Mycobacterium tuberculosis is emphasized. In addition, host-directed therapeutics using both conventional drugs and herbal medicines for more effective TB treatment should also be explored. In this article, we review historical aspects of the research on anti-TB drugs and discuss the current understanding and treatments of drug resistant and persistent tuberculosis to inform future therapeutic development.
Humans
;
Pyrazinamide/therapeutic use*
;
Isoniazid/therapeutic use*
;
Antitubercular Agents/therapeutic use*
;
Tuberculosis, Multidrug-Resistant/microbiology*
;
Mycobacterium tuberculosis/genetics*
;
Tuberculosis/drug therapy*
;
Rifampin/therapeutic use*
;
Mutation
;
Drug Resistance, Multiple, Bacterial/genetics*

Result Analysis
Print
Save
E-mail