1.Interactions between Xuefu Zhuyu Decoction and atorvastatin based on human intestinal cell models and in vivo pharmacokinetics in rats.
Xiang LI ; Huan YI ; Chang-Ying REN ; Hao-Hao GUO ; Hong-Tian YANG ; Ying ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3159-3167
The study aims to explore the herb-drug interaction between Xuefu Zhuyu Decoction(XFZY) and atorvastatin(AT). Reverse transcription polymerase chain reaction(RT-PCR) was used to analyze the transcription levels of proteins related to drug metabolism and transport in LS174T cells, detect the intracellular drug uptake under various substrate concentrations and incubation time, and optimize the model reaction conditions of transporter multidrug resistance protein 1(MDR1)-specific probe Rhodamine 123 and AT to establish a cell model for investigating the human intestinal drug interaction. The cell counting kit-8(CCK-8) method was adopted to evaluate the cytotoxicity of XFZY on LS174T cells. After a single and continuous 48 h culture with XFZY, AT or Rhodamine 123 was added for co-incubation. The effect and mechanism of XFZY on human intestinal absorption of AT were analyzed by measuring the intracellular drug concentrations and transcription levels of related transporters and metabolic enzymes. The results of in vitro experiments show that a single co-culture with a high concentration of XFZY significantly increases the intracellular concentrations of Rhodamine 123 and AT. A high concentration of XFZY co-culture for 48 h increases the AT uptake level, significantly induces the CYP3A4 and UGT1A1 gene expression levels, and inhibits the OATP2B1 gene expression level. To compare with the evaluation results of the in vitro human cell model, the pharmacokinetic experiment of XFZY combined with AT was carried out in rats. Sprague-Dawley(SD) rats were randomly divided into a blank control group and an XFZY group. After 14 days of continuous intragastric administration, AT was given in combination. The liquid chromatography-mass spectrometry(LC-MS)/MS method was used to detect the concentrations of AT and metabolites 2-hydroxyatorvastatin acid(2-HAT), 4-hydroxyatorvastatin acid(4-HAT), atorvastatin lactone(ATL), 2-hydroxyatorvastatin lactone(2-HATL), and 4-hydroxyatorvastatin lactone(4-HATL) in plasma samples, and the pharmacokinetic parameters were calculated. Pharmacokinetic analysis in rats shows that continuous administration of XFZY does not significantly change the pharmacokinetic characteristics of AT in rats, but the AUC_(0-6 h) values of AT and metabolites 2-HAT, 4-HAT, and 2-HATL increase by 21.37%, 14.94%, 12.42%, and 6.68%, respectively. The metabolic rate of the main metabolites shows a downward trend. The study indicates that administration combined with XFZY can significantly increase the uptake level of AT in human intestinal cells and increase the exposure level of AT and main metabolites in rats to varying degrees. The mechanism may be mainly due to the inhibition of intestinal MDR1 transport activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atorvastatin/administration & dosage*
;
Humans
;
Rats
;
Rats, Sprague-Dawley
;
Male
;
Intestines/cytology*
;
Intestinal Mucosa/metabolism*
;
Herb-Drug Interactions
;
Cytochrome P-450 CYP3A/metabolism*
;
Intestinal Absorption/drug effects*
2.Synergistic neuroprotective effects of main components of salvianolic acids for injection based on key pathological modules of cerebral ischemia.
Si-Yu TAN ; Ya-Xu WU ; Zi-Shu YAN ; Ai-Chun JU ; De-Kun LI ; Peng-Wei ZHUANG ; Yan-Jun ZHANG ; Hong GUO
China Journal of Chinese Materia Medica 2025;50(3):693-701
This study aims to explore the synergistic effects of the main components in salvianolic acids for Injection(SAFI) on key pathological events in cerebral ischemia, elucidating the pharmacological characteristics of SAFI in neuroprotection. Two major pathological gene modules related to endothelial injury and neuroinflammation in cerebral ischemia were mined from single-cell data. According to the topological distance calculated in network medicine, potential synergistic component combinations of SAFI were screened out. The results showed that the combination of caffeic acid and salvianolic acid B scored the highest in addressing both endothelial injury and neuroinflammation, demonstrating potential synergistic effects. The cell experiments confirmed that the combination of these two components at a ratio of 1∶1 significantly protected brain microvascular endothelial cells(bEnd.3) from oxygen-glucose deprivation/reoxygenation(OGD/R)-induced reperfusion injury and effectively suppressed lipopolysaccharide(LPS)-induced neuroinflammatory responses in microglial cells(BV-2). This study provides a new method for uncovering synergistic effects among active components in traditional Chinese medicine(TCM) and offers novel insights into the multi-component, multi-target acting mechanisms of TCM.
Brain Ischemia/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Benzofurans/pharmacology*
;
Mice
;
Drug Synergism
;
Caffeic Acids/pharmacology*
;
Polyphenols/pharmacology*
;
Humans
;
Alkenes/pharmacology*
;
Endothelial Cells/drug effects*
;
Depsides
3.Ginsenoside-Rg5 Synergizes with Imatinib to Enhances the Anti-Chronic Myeloid Leukemia K562 Cell Activity through PI3K/AKT/mTOR Pathway.
Di JIN ; Chang-Qing GUI ; Qian-Qian YE ; Guo-Fang DENG ; Chang-Ling ZHU ; Li XU
Journal of Experimental Hematology 2025;33(1):1-8
OBJECTIVE:
To investigate the synergistic effect and its mechanism of ginsenoside-Rg5 in combination with imatinib in inhibiting proliferation of chronic myeloid leukemia K562 cells.
METHODS:
K562 cells were treated with ginsenoside-Rg5 and imatinib. Cell survival was detected by CCK-8 assay, and IC50 were calculated separately for each drug. Based on the value of IC50 of ginsenoside-Rg5 and imatinib, an appropriate concentration gradient was selected for the combination. The synergistic effect of the two drug was analyzed using the online software synergy finder. The effects of single or combination therapy on apoptosis rate and the cell cycle distribution of K562 cells were analyzed by flow cytometry. Western blot was used to detect the expression of PI3K/AKT/mTOR signaling pathway related proteins and apoptosis related proteins in K562 cells after single or combination therapy.
RESULTS:
Ginsenoside-Rg5 and imatinib were able to inhibit the proliferative activity of K562 cells in a dosedependent manner(r =-0.991, r =-0.942). The synergy score ZIP >10 was measured by Synergy Finder online software, indicating that ginsenoside-Rg5 and imatinib act synergistically on K562 cells. The apoptotic rates of K562 cells after single treatments with ginsenoside-Rg5 and imatinib were 11.96% and 8.13%, respectively, while the rate increased to 21.35% with the combination of two drugs, the apoptosis rate in the combination group was higher than that in the single-drug group ( P <0.05). The proportion of K562 cells in the G0/G1 phase was significantly increased with the combined treatment of two drugs( P <0.05). The protein expression levels of p-PI3K, p-AKT, p-mTOR in K562 cells treated with the combination were significantly decreased, with noticeable downregulation of BCL-2 and upregulation of BAX, leading to a decreased Bcl-2/BAX ratio, while no significant changes were observed in the non-phosphorylated forms of PI3K, AKT, and mTOR proteins.
CONCLUSION
The combination of ginsenoside-Rg5 and imatinib can inhibit the proliferation of CML cells and induce apoptosis, and the mechanism may act through PI3K/AKT/mTOR signaling pathways.
Humans
;
Ginsenosides/pharmacology*
;
Imatinib Mesylate
;
K562 Cells
;
TOR Serine-Threonine Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction/drug effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism*
;
Drug Synergism
;
Apoptosis/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Cell Proliferation/drug effects*
4.Synergistic Effect of Combination of Flumatinib with Chidamide in Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia.
Chen-Yan YANG ; Chan YANG ; Zheng GE
Journal of Experimental Hematology 2025;33(4):951-960
OBJECTIVE:
To explore the synergistic effect of flumatinib (FLU) combined with histone deacetylase inhibitor chidamide (CHI) and underlying mechanism on Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) SUP-B15 cells.
METHODS:
CCK-8 method was used to examine the effects of FLU, CHI alone and combination therapy on the proliferation of SUP-B15 cells. Flow cytometry was utilized to analyze the cell cycle and apoptosis. RT-qPCR and Western blot methods were performed to detect target gene expression.
RESULTS:
FLU combined with CHI significantly inhibited the proliferation, induced G0/G1 phase arrest, and increased the apoptosis rate in SUP-B15 cells compared with FLU and CHI alone. The 50 genes were identified by overlapping the two drugs' targets of action with Ph+ ALL oncogenic genes in the public databases, and p53 and c-Myc transcription factors and PI3K/AKT signaling pathways were enriched in the overlapped genes. The combination of FLU and CHI significantly reduced the mRNA level of BCR::ABL fusion gene, up-regulated the protein and mRNA levels of p53, BAX, and Caspase-3, and down-regulated the protein and mRNA levels of c-Myc, PIK3CA, PIK3CB, and AKT2 compared with single-drug therapy. The analysis of GEO database and our center cohort showed that c-Myc, PIK3CA, PIK3CB, and AKT2 were significantly up-regulated while p53 was down-regulated in Ph+ ALL patients compared to healthy controls.
CONCLUSION
FLU combined with CHI synergistically inhibits cell proliferation, promotes apoptosis, and induces cycle arrest by targeting the PI3K/AKT signaling pathway through the p53/c-Myc axis in Ph+ ALL.
Humans
;
Aminopyridines/pharmacology*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Apoptosis/drug effects*
;
Benzamides/pharmacology*
;
Cell Proliferation/drug effects*
;
Philadelphia Chromosome
;
Drug Synergism
;
Cell Line, Tumor
;
Signal Transduction
;
Pyridines/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
5.Exploring artificial intelligence approaches for predicting synergistic effects of active compounds in traditional Chinese medicine based on molecular compatibility theory.
Yiwen WANG ; Tong WU ; Xingyu LI ; Qilan XU ; Heshui YU ; Shixin CEN ; Yi WANG ; Zheng LI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1409-1424
Due to its synergistic effects and reduced side effects, combination therapy has become an important strategy for treating complex diseases. In traditional Chinese medicine (TCM), the "monarch, minister, assistant, envoy" compatibilities theory provides a systematic framework for drug compatibility and has guided the formation of a large number of classic formulas. However, due to the complex compositions and diverse mechanisms of action of TCM, it is difficult to comprehensively reveal its potential synergistic patterns using traditional methods. Synergistic prediction based on molecular compatibility theory provides new ideas for identifying combinations of active compounds in TCM. Compared to resource-intensive traditional experimental methods, artificial intelligence possesses the ability to mine synergistic patterns from multi-omics and structural data, providing an efficient means for modeling and optimizing TCM combinations. This paper systematically reviews the application progress of AI in the synergistic prediction of TCM active compounds and explores the challenges and prospects of its application in modeling combination relationships, thereby contributing to the modernization of TCM theory and methodological innovation.
Artificial Intelligence
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Drug Synergism
6.A heterogeneous graph method integrating multi-layer semantics and topological information for improving drug-target interaction prediction.
Zihao CHEN ; Yanbu GUO ; Shengli SONG ; Quanming GUO ; Dongming ZHOU
Journal of Southern Medical University 2025;45(11):2394-2404
OBJECTIVES:
To develop a heterogeneous graph prediction method based on the fusion of multi-layer semantics and topological information for addressing the challenges in drug-target interaction prediction, including insufficient modeling of high-order semantic dependencies, lack of adaptive fusion of semantic paths, and over-smoothing of node features.
METHODS:
A heterogeneous graph network with multiple types of entities such as drugs, proteins, side effects, and diseases was constructed, and graph embedding techniques were used to obtain low-dimensional feature representations. An adaptive metapath search module was introduced to automatically discover semantic path combinations for guiding the propagation of high-order semantic information. A semantic aggregation mechanism integrating multi-head attention was designed to automatically learn the importance of each semantic path based on contextual information and achieve differentiated aggregation and dynamic fusion among paths. A structure-aware gated graph convolutional module was then incorporated to regulate the feature propagation intensity for suppressing redundant information and redcuing over-smoothing. Finally, the potential interactions between drugs and targets were predicted through an inner product operation.
RESULTS:
Compared with existing drug-target interaction prediction methods, the proposed method achieved an average improvement of 3.4% and 2.4%, 3.0% and 3.8% in terms of the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPRC) on public datasets, respectively.
CONCLUSIONS
The drug-target interaction prediction method developed in this study can effectively extract complex high-order semantic and topological information from heterogeneous biological networks, thereby improving the accuracy and stability of drug-target interaction prediction. This method provides technical support and theoretical foundation for precise drug target discovery and targeted treatment of complex diseases.
Semantics
;
Humans
;
Drug Interactions
;
Neural Networks, Computer
;
Algorithms
7.Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells.
Yi WANG ; Xiao-Yu SUN ; Fang-Qi MA ; Ming-Ming REN ; Ruo-Han ZHAO ; Meng-Meng QIN ; Xiao-Hong ZHU ; Yan XU ; Ni-da CAO ; Yuan-Yuan CHEN ; Tian-Geng DONG ; Yong-Fu PAN ; Ai-Guang ZHAO
Journal of Integrative Medicine 2025;23(3):320-332
OBJECTIVE:
Gastric cancer (GC) is one of the most common malignancies seen in clinic and requires novel treatment options. Morin is a natural flavonoid extracted from the flower stalk of a highly valuable medicinal plant Prunella vulgaris L., which exhibits an anti-cancer effect in multiple types of tumors. However, the therapeutic effect and underlying mechanism of morin in treating GC remains elusive. The study aims to explore the therapeutic effect and underlying molecular mechanisms of morin in GC.
METHODS:
For in vitro experiments, the proliferation inhibition of morin was measured by cell counting kit-8 assay and colony formation assay in human GC cell line MKN45, human gastric adenocarcinoma cell line AGS, and human gastric epithelial cell line GES-1; for apoptosis analysis, microscopic photography, Western blotting, ubiquitination analysis, quantitative polymerase chain reaction analysis, flow cytometry, and RNA interference technology were employed. For in vivo studies, immunohistochemistry, biomedical analysis, and Western blotting were used to assess the efficacy and safety of morin in a xenograft mouse model of GC.
RESULTS:
Morin significantly inhibited the proliferation of GC cells MKN45 and AGS in a dose- and time-dependent manner, but did not inhibit human gastric epithelial cells GES-1. Only the caspase inhibitor Z-VAD-FMK was able to significantly reverse the inhibition of proliferation by morin in both GC cells, suggesting that apoptosis was the main type of cell death during the treatment. Morin induced intrinsic apoptosis in a dose-dependent manner in GC cells, which mainly relied on B cell leukemia/lymphoma 2 (BCL-2) associated agonist of cell death (BAD) but not phorbol-12-myristate-13-acetate-induced protein 1. The upregulation of BAD by morin was due to blocking the ubiquitination degradation of BAD, rather than the transcription regulation and the phosphorylation of BAD. Furthermore, the combination of morin and BCL-2 inhibitor navitoclax (also known as ABT-737) produced a synergistic inhibitory effect in GC cells through amplifying apoptotic signals. In addition, morin treatment significantly suppressed the growth of GC in vivo by upregulating BAD and the subsequent activation of its downstream apoptosis pathway.
CONCLUSION
Morin suppressed GC by inducing apoptosis, which was mainly due to blocking the ubiquitination-based degradation of the pro-apoptotic protein BAD. The combination of morin and the BCL-2 inhibitor ABT-737 synergistically amplified apoptotic signals in GC cells, which may overcome the drug resistance of the BCL-2 inhibitor. These findings indicated that morin was a potent and promising agent for GC treatment. Please cite this article as: Wang Y, Sun XY, Ma FQ, Ren MM, Zhao RH, Qin MM, Zhu XH, Xu Y, Cao ND, Chen YY, Dong TG, Pan YF, Zhao AG. Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells. J Integr Med. 2025; 23(3): 320-332.
Humans
;
Flavonoids/therapeutic use*
;
Stomach Neoplasms/pathology*
;
Animals
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Ubiquitination/drug effects*
;
Mice
;
Drug Synergism
;
Mice, Inbred BALB C
;
Mice, Nude
;
Xenograft Model Antitumor Assays
;
Flavones
8.Host-microbe co-metabolism system as potential targets: the promising way for natural medicine to treat atherosclerosis.
Yun WANG ; Ziwei ZHOU ; Haiping HAO ; Lijuan CAO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):790-800
The host-microbe co-metabolism system, generating diverse exogenous and endogenous bioactive molecules that influence the host's immune and metabolic functions, plays a crucial role in the pathogenesis of atherosclerosis. Recent studies have elucidated the interaction between natural medicines and this co-metabolism system. Upon oral administration, natural medicine ingredients can undergo transformation by gut microbiota, potentially enhancing their bioavailability or anti-atherogenic efficacy. Furthermore, natural medicines can exert anti-atherogenic effects via modulation of endogenous host-microbe co-metabolism. This review presents an updated understanding of the dual association between natural medicines and host-microbe co-metabolites. It explores the critical function of microbial exogenous metabolites derived from natural medicines and uncovers the mechanisms underlying natural medicines' intervention on key nodes of endogenous host-microbe co-metabolism. These insights may offer new perspectives for cardiovascular disease (CVD) treatment and guide future drug discovery efforts.
Humans
;
Atherosclerosis/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Biological Products/therapeutic use*
;
Animals
;
Host Microbial Interactions/drug effects*
9.Platycodon grandiflorus polysaccharides combined with hesperidin exerted the synergistic effect of relieving ulcerative colitis in mice by modulating PI3K/AKT and JAK2/STAT3 signaling pathways.
Yang LIU ; Quanwei SUN ; Xuefei XU ; Mengmeng LI ; Wenheng GAO ; Yunlong LI ; Ye YANG ; Dengke YIN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):848-862
Ulcerative colitis (UC) is a chronic inflammatory disorder with a complex etiology, characterized by intestinal inflammation and barrier dysfunction. Platycodon grandiflorus polysaccharides (PGP), the primary component of Platycodon grandiflorus, and hesperidin (Hesp), a prominent active component in Citrus aurantium L. (CAL), have both demonstrated anti-inflammatory properties. This study aims to elucidate the underlying mechanism of the synergistic effect of PGP combined with Hesp on UC, focusing on the coordinated interaction between the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathways. A mouse model of UC induced by dextran sulfate sodium (DSS) and a cell model using lipopolysaccharide (LPS)-induced RAW264.7/IEC6 cells were employed to investigate the in vitro and in vivo anti-inflammatory effects of PGP combined with Hesp on UC and its potential mechanism of action. The results indicated that compared to the effects of either drug alone, the combination of PGP and Hesp significantly modulated inflammatory factor levels, inhibited oxidative stress, regulated colonic mucosal immunity, suppressed apoptosis, and restored intestinal barrier function in vitro and in vivo. Further in vitro studies revealed that PGP significantly inhibited the PI3K/AKT signaling pathway, while Hesp significantly inhibited the JAK2/STAT3 signaling pathway. The use of inhibitors and activators targeting both pathways validated the synergistic effects of PGP combined with Hesp on the PI3K/AKT and JAK2/STAT3 signaling pathways. These findings suggest that PGP combined with Hesp exhibits a synergistic effect on DSS-induced colitis, potentially mediated through the phosphatase and tensin homolog (PTEN)/PI3K/AKT and interleukin-6 (IL-6)/JAK2/STAT3 signaling pathways.
Animals
;
STAT3 Transcription Factor/genetics*
;
Janus Kinase 2/genetics*
;
Polysaccharides/administration & dosage*
;
Colitis, Ulcerative/chemically induced*
;
Mice
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drug Synergism
;
Male
;
Hesperidin/administration & dosage*
;
Platycodon/chemistry*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Disease Models, Animal
;
RAW 264.7 Cells
;
Mice, Inbred C57BL
10.The transcriptomic-based disease network reveals synergistic therapeutic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus.
Qian CHEN ; Shuying ZHANG ; Xuanxi JIANG ; Jie LIAO ; Xin SHAO ; Xin PENG ; Zheng WANG ; Xiaoyan LU ; Xiaohui FAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):997-1008
Coptis chinensis Franch. and Panax ginseng C. A. Mey. are traditional herbal medicines with millennia of documented use and broad therapeutic applications, including anti-diabetic properties. However, the synergistic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus (T2DM) and its underlying mechanism remain unclear. The research demonstrated that the optimal ratio of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng was 4∶1, exhibiting maximal efficacy in improving insulin resistance and gluconeogenesis in primary mouse hepatocytes. This combination demonstrated significant synergistic effects in improving glucose tolerance, reducing fasting blood glucose (FBG), the weight ratio of epididymal white adipose tissue (eWAT), and the homeostasis model assessment of insulin resistance (HOMA-IR) in leptin receptor-deficient (db/db) mice. Subsequently, a T2DM liver-specific network was constructed based on RNA sequencing (RNA-seq) experiments and public databases by integrating transcriptional properties of disease-associated proteins and protein-protein interactions (PPIs). The network recovery index (NRI) score of the combined treatment group with a 4∶1 ratio exceeded that of groups treated with individual components. The research identified that activated adenosine 5'-monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling in the liver played a crucial role in the synergistic treatment of T2DM, as verified by western blot experiment in db/db mice. These findings demonstrate that the 4∶1 combination of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng significantly improves insulin resistance and glucose and lipid metabolism disorders in db/db mice, surpassing the efficacy of individual treatments. The synergistic mechanism correlates with enhanced AMPK/ACC signaling pathway activity.
Animals
;
Panax/chemistry*
;
Ginsenosides/administration & dosage*
;
Diabetes Mellitus, Type 2/metabolism*
;
Mice
;
Male
;
Alkaloids/pharmacology*
;
Coptis/chemistry*
;
Drug Synergism
;
Insulin Resistance
;
Mice, Inbred C57BL
;
Humans
;
Transcriptome/drug effects*
;
Blood Glucose/metabolism*
;
Hypoglycemic Agents/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hepatocytes/metabolism*

Result Analysis
Print
Save
E-mail