1.Preparation and intestinal absorption mechanism of herpetrione and Herpetospermum caudigerum polysaccharides based self-assembled nanoparticles.
Xiang DENG ; Yu-Wen ZHU ; Ji-Xing ZHENG ; Rui SONG ; Jian-Tao NING ; Ling-Yu HANG ; Zhi-Hui YANG ; Hai-Long YUAN
China Journal of Chinese Materia Medica 2025;50(2):404-412
In this experiment, self-assembled nanoparticles(SANs) were prepared by the pH-driven method, and Her-HCP SAN was constructed by using herpetrione(Her) and Herpetospermum caudigerum polysaccharides(HCPs). The average particle size and polydispersity index(PDI) were used as evaluation indexes for process optimization, and the quality of the final formulation was evaluated in terms of particle size, PDI, Zeta potential, and microstructure. The proposed Her-HCP SAN showed a spheroid structure and uniform morphology, with an average particle size of(244.58±16.84) nm, a PDI of 0.147 1±0.014 8, and a Zeta potential of(-38.52±2.11) mV. Her-HCP SAN significantly increased the saturation solubility of Her by 2.69 times, with a cumulative release of 90.18% within eight hours. The results of in vivo unidirectional intestinal perfusion reveal that Her active pharmaceutical ingredient(API) is most effectively absorbed in the jejunum, where both K_a and P_(app) are significantly higher compared to the ileum(P<0.001). However, the addition of HCP leads to a significant reduction in the P_(app) of Her in the jejunum(P<0.05). Furthermore, the formation of the Her-HCP SAN results in a notably lower P_(app) in the jejunum compared to Her API alone(P<0.001), while both K_a and P_(app) in the ileum are significantly increased(P<0.001, P<0.05). The absorption of Her-HCP SAN at different concentrations in the ileum shows no significant differences, and the pH has no significant effect on the absorption of Her-HCP SAN in the ileum. The addition of the transporter protein inhibitors(indomethacin and rifampicin) significantly increases the absorption parameters K_a and P_(app) of Her-HCP SAN in the ileum(P<0.05,P<0.01), whereas the addition of verapamil has no significant effect on the intestinal absorption parameters of Her-HCP SAN, suggesting that Her may be a substrate for multidrug resistance-associated protein 2 and breast cancer resistance proteins but not a substrate of P-glycoprotein.
Nanoparticles/metabolism*
;
Polysaccharides/pharmacokinetics*
;
Intestinal Absorption/drug effects*
;
Animals
;
Rats
;
Particle Size
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Male
;
Rats, Sprague-Dawley
;
Drug Carriers/chemistry*
;
Drug Compounding
;
Cucurbitaceae/chemistry*
2.Research progress in application characteristics of plant-derived exosome-like nanovesicles in intestinal diseases.
Yuan ZUO ; Jin-Ying ZHANG ; Sheng-Dong XU ; Shuo TIAN ; Ming-San MIAO
China Journal of Chinese Materia Medica 2025;50(14):3868-3877
Inflammatory bowel disease is a chronic, idiopathic, and recurrent gastrointestinal disorder with an unclear etiology and uncertain pathogenesis. Traditional treatment strategies rely on frequent administration of high doses of medication to reduce inflammation, whereas these approaches have limitations and may induce potential complications. Therefore, finding more effective and safe therapeutic drugs and methods is particularly important. Plant-derived exosome-like nanovesicles(PDELNs) are nano-sized vesicles with a lipid bilayer structure that are secreted by plant cells. The bioactive molecules contained within, such as lipids, proteins, and nucleic acids, can serve as information carriers, playing a role in the transmission of information and substances between cells and across species. PDELNs can carry and transfer their own bioactive substances or act as carriers for delivering other active components or drugs. Due to the high biocompatibility, low toxicity, and significant bioactivity, PDELNs have garnered widespread attention. Compared with other exosomes, PDELNs are not destroyed in the gastrointestinal tract when taken orally and can reach the intestines. This unique property makes PDELNs a promising oral nanodrug for treating intestinal diseases, showing great potential in this area. This article reviews recent research literature on PDELNs regarding the physicochemical characteristics, extraction and purification methods, functions, application characteristics and mechanisms in the treatment of intestinal diseases, and use as a carrier for treating intestinal diseases, aiming to provide a reference for the use of PDELNs in the treatment of intestinal diseases.
Humans
;
Exosomes/metabolism*
;
Animals
;
Intestinal Diseases/metabolism*
;
Plants/metabolism*
;
Drug Carriers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Drug Delivery Systems
;
Nanoparticles/chemistry*
3.Advances in the application of live bacteria as vehicles for delivering antitumor drugs.
Tingting HUA ; Bin ZHENG ; Yang BAI
Chinese Journal of Biotechnology 2024;40(11):3861-3871
Some bacteria can selectively colonize the tumor site and inhibit tumor growth, serving as ideal vehicles for delivering antitumor drugs. The system of delivering antitumor drugs with live bacteria as vehicles is characterized by good biocompatibility and precise targeting. However, the development of bacteria as drug delivery vehicles is limited by their own immunogenicity. In this paper, the selection of chassis bacteria, bacterial loading drug strategies, antitumor drug delivery applications and their limitations are elaborated in detail, and its future development direction is envisioned, with a view to providing a reference for the study of live bacteria as antitumor drug delivery carriers.
Antineoplastic Agents
;
Humans
;
Drug Delivery Systems
;
Neoplasms/drug therapy*
;
Drug Carriers
;
Bacteria/metabolism*
;
Animals
4.Effect of exosomes as drug carriers in chemotherapy of pancreatic cancer.
Journal of Central South University(Medical Sciences) 2023;48(2):268-274
Pancreatic cancer (PC) is a malignant tumor of the digestive tract with poor patient prognosis. The PC incidence is still increasing with a 5-year survival rate of only 10%. At present, surgical resection is the most effective method to treat PC, however, 80% of the patients missed the best time for surgery after they have been diagnosed as PC. Chemotherapy is one of the main treating methods but PC is insensitive to chemotherapy, prone to drug resistance, and is accompanied by many side effects which are related to a lack of specific target. Exosomes are nanoscale vesicles secreted by almost all cell types and can carry various bioactive substances which mediate cell communication and material transport. They are characterized by a low immunogenicity, low cytotoxicity, high penetration potential and homing capacity, and possess the potential of being used as advanced drug carriers. Therefore, it is a hot research topic to use drug-loaded exosomes for tumor therapy. They may alleviate chemotherapy resistance, reduce side effects, and enhance the curative effect. In recent years, exosome drug carriers have achieved considerable results in PC chemotherapy studies.
Humans
;
Exosomes/metabolism*
;
Drug Carriers/metabolism*
;
Pancreatic Neoplasms/diagnosis*
;
Antineoplastic Agents/therapeutic use*
5.Mechanism of Der f 1/IGF-1 nanoparticle promoting the production of regulatory T cell.
Longpeng MA ; Xiangqian LUO ; Lihua MO ; Jialiang FAN ; Dabo LIU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(4):272-277
Objective:To prepare PLGA nanoparticles loaded with Der f 1/IGF-1(Der f 1/IGF-1 NPs) and investigate their role in promoting the formation of Treg cells. Methods:NPs coated with Der f 1/IGF-1 were prepared by double emulsion method and their physicochemical properties and cumulative release rate in vitro were analyzed. After pretreatment, BMDC was divided into Saline group, Blank NPs group, Der f 1/IGF-1 group and Der f 1/IGF-1 NPs group. Determination of the expression of IL-10 and TGF-β in BMDC by ELISA. The number of Treg cells was detected by flow cytometry. Results:The results showed that Der f 1/IGF-1 NPs were spherical structures, with good dispersion, particle size less than 200 nm, negative charge and stable slow-release effect of Zeta potential. After BMDC pretreatment, the expression levels of TGF-β and IL-10 in BMDC cells in the Der f 1/IGF-1 NPs group were significantly increased compared with the Blank NPs group, and the difference was statistically significant(P<0.001). After co-culture with CD4+ T cells, the proportion of Treg cells produced in the Der f 1/IGF-1 NPs group was significantly increased, and the difference was statistically significant(P<0.001). Conclusion:Der f 1/IGF-1 NPs can induce Treg cell generation in vitro. This study provides a new and more effective method for the reconstruction of immune tolerance dysfunction.
Humans
;
T-Lymphocytes, Regulatory/metabolism*
;
Interleukin-10/metabolism*
;
Insulin-Like Growth Factor I
;
Transforming Growth Factor beta
;
Nanoparticles/chemistry*
;
Particle Size
;
Drug Carriers/chemistry*
6.Formulation development and evaluation of gastroretentive floating beads with Brucea javanica oil using ionotropic gelation technology.
Yue ZHANG ; Xi-Tong ZHANG ; Qi ZHANG ; Bing WANG ; Tong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(4):293-301
In the present study, a gastric retention floating system for Brucea javanica oil, composed of alginate and carrageenan, was prepared using ionotropic gelation. Parameters for floatability, drug load, encapsulation efficiency, bead morphology, in vitro release, and in vivo gastric retention were evaluated. The optimized formulation via Box-Behnken design consisted of 1.7% alginate (W/V), 1.02% carrageenan (W/V), 1.4% CaCO (W/V), and a gelling bath of pH 0.8. The alginate-carrageenan-Brucea javanica oil beads had a porous structure and exhibited up to 24 h of in vitro floatability with a load capacity of 45%-55% and an encapsulation efficiency of 70%-80%. A 6-h sustained release was observed in vitro. The beads had a prolonged gastric retention (> 60% at 6 h) in fasted rats, compared to non-floating beads (15% at 6 h), as measured by gamma scintigraphy with single-photon emission tomography/computed tomography (SPET/CT). In conclusion, the alginate-carrageenan-Brucea javanica oil system showed enhanced oil encapsulation efficiency, excellent floating and gastric retention abilities, and a favorable release behavior.
Alginates
;
chemistry
;
Animals
;
Biological Availability
;
Brucea
;
chemistry
;
Carrageenan
;
chemistry
;
Delayed-Action Preparations
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
Drug Carriers
;
chemistry
;
Drug Delivery Systems
;
methods
;
Drug Evaluation, Preclinical
;
Gastric Mucosa
;
metabolism
;
Glucuronic Acid
;
chemistry
;
Hexuronic Acids
;
chemistry
;
Microspheres
;
Plant Oils
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
Rats
;
Rats, Sprague-Dawley
7.Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy.
Zhu CHEN ; Shang DENG ; De-Chao YUAN ; Kang LIU ; Xiao-Cong XIANG ; Liang CHENG ; Dong-Qin XIAO ; Li DENG ; Gang FENG
Journal of Zhejiang University. Science. B 2018;19(12):910-923
OBJECTIVE:
To construct a novel non-viral vector loaded with growth and differentiation factor-5 (GDF-5) plasmid using chitosan, hyaluronic acid, and chondroitin sulfate for osteoarthritis (OA) gene therapy.
METHODS:
Nano-microspheres (NMPs) were prepared by mixing chitosan, hyaluronic acid, and chondroitin sulfate. GDF-5 plasmid was encapsulated in the NMPs through electrostatic adsorption. The basic characteristics of the NMPs were observed, and then they were co-cultured with chondrocytes to observe their effects on extracellular matrix (ECM) protein expression. Finally, NMPs loaded with GDF-5 were injected into the articular cavities of rabbits to observe their therapeutic effects on OA in vivo.
RESULTS:
NMPs exhibited good physicochemical properties and low cytotoxicity. Their average diameter was (0.61±0.20) μm, and encapsulation efficiency was (38.19±0.36)%. According to Cell Counting Kit-8 (CCK-8) assay, relative cell viability was 75%-99% when the total weight of NMPs was less than 560 μg. Transfection efficiency was (62.0±2.1)% in a liposome group, and (60.0±1.8)% in the NMP group. There was no significant difference between the two groups (P>0.05). Immunohistochemical staining results suggested that NMPs can successfully transfect chondrocytes and stimulate ECM protein expression in vitro. Compared with the control groups, the NMP group significantly promoted the expression of chondrocyte ECM in vivo (P<0.05), as shown by analysis of the biochemical composition of chondrocyte ECM. When NMPs were injected into OA model rabbits, the expression of ECM proteins in chondrocytes was significantly promoted and the progression of OA was slowed down.
CONCLUSIONS
Based on these data, we think that these NMPs with excellent physicochemical and biological properties could be promising non-viral vectors for OA gene therapy.
Animals
;
Cell Differentiation
;
Cell Survival/drug effects*
;
Chitosan/chemistry*
;
Chondrocytes/cytology*
;
Chondroitin Sulfates/chemistry*
;
Drug Carriers
;
Extracellular Matrix/metabolism*
;
Genetic Therapy/methods*
;
Growth Differentiation Factor 5/genetics*
;
Hyaluronic Acid/chemistry*
;
Microspheres
;
Nanomedicine
;
Osteoarthritis/therapy*
;
Plasmids/metabolism*
;
Rabbits
8.Pharmacokinetics and correlation between in vitro release and in vivo absorption of bio-adhesive pellets of panax notoginseng saponins.
Ying LI ; Yun ZHANG ; Chun-Yan ZHU
Chinese Journal of Natural Medicines (English Ed.) 2017;15(2):142-151
The present study was designed to prepare and compare bio-adhesive pellets of panax notoginseng saponins (PNS) with hydroxy propyl methyl cellulose (HPMC), chitosan, and chitosan : carbomer, explore the influence of different bio-adhesive materials on pharmacokinetics behaviors of PNSbio-adhesive pellets, and evaluate the correlation between in vivo absorption and in vitro release (IVIVC). In order to predict the in vivo concentration-time profile by the in vitro release data of bio-adhesive pellets, the release experiment was performed using the rotating basket method in pH 6.8 phosphate buffer. The PNS concentrations in rat plasma were analyzed by HPLC-MS-MS method and the relative bioavailability and other pharmacokinetic parameters were estimated using Kinetica4.4 pharmacokinetic software. Numerical deconvolution method was used to evaluate IVIVC. Our results indicated that, compared with ordinary pellets, PNS bio-adhesive pellets showed increased oral bioavailability by 1.45 to 3.20 times, increased C, and extended MRT. What's more, the release behavior of drug in HPMC pellets was shown to follow a Fickian diffusion mechanism, a synergetic function of diffusion and skeleton corrosion. The in vitro release and the in vivo biological activity had a good correlation, demonstrating that the PNS bio-adhesive pellets had a better sustained release. Numerical deconvolution technique showed the advantage in evaluation of IVIVC for self-designed bio-adhesive pellets with HPMC. In conclusion, the in vitro release data of bio-adhesive pellets with HPMC can predict its concentration-time profile in vivo.
Acrylic Resins
;
Adhesives
;
Animals
;
Chitosan
;
Drug Carriers
;
Drug Liberation
;
In Vitro Techniques
;
Intestinal Absorption
;
Male
;
Methylcellulose
;
Panax notoginseng
;
chemistry
;
Plant Extracts
;
administration & dosage
;
metabolism
;
pharmacokinetics
;
Rats, Sprague-Dawley
;
Saponins
;
administration & dosage
;
metabolism
;
pharmacokinetics
9.Progress in the study of core-crosslinked polymeric micelles in drug delivery system.
Jing-Mou YU ; Jia-Zhong WU ; Xin-Shi WANG ; Yi JIN
Acta Pharmaceutica Sinica 2014;49(2):183-189
The core-crosslinked polymeric micelles were used as a new drug delivery system, which can decrease the premature drug release in blood circulation, improve the stability of the micelles, and effectively transport the drug into the therapy sites. Then the drug bioavailability increased further, while the side effect reduced. Most drugs were physically entrapped or chemically covalent with the polymer in the internals of micelles. Based on the various constitutions and properties of polymeric micelles as well as the special characteristics of body microenvironment, the environment-responsive or active targeting core-crosslinked micelles were designed and prepared. As a result, the drug controlled release behavior was obtained. In the present paper, the research progress of all kinds of core-crosslinked micelles which were published in recent years is introduced. Moreover, the characteristic and application prospect of these micelles in drug delivery system are analyzed and summarized.
Animals
;
Antineoplastic Agents
;
administration & dosage
;
chemistry
;
therapeutic use
;
Cross-Linking Reagents
;
chemistry
;
metabolism
;
Drug Carriers
;
chemistry
;
metabolism
;
Humans
;
Micelles
;
Molecular Structure
;
Neoplasms
;
drug therapy
;
Particle Size
;
Pharmaceutical Preparations
;
administration & dosage
;
Polyethylene Glycols
;
chemistry
;
metabolism
;
Polymers
;
chemistry
;
metabolism
10.A Novel Recombinant BCG Vaccine Encoding Eimeria tenella Rhomboid and Chicken IL-2 Induces Protective Immunity Against Coccidiosis.
Qiuyue WANG ; Lifeng CHEN ; Jianhua LI ; Jun ZHENG ; Ning CAI ; Pengtao GONG ; Shuhong LI ; He LI ; Xichen ZHANG
The Korean Journal of Parasitology 2014;52(3):251-256
A novel recombinant Bacille Calmette-Guerin (rBCG) vaccine co-expressed Eimeria tenella rhomboid and cytokine chicken IL-2 (chIL-2) was constructed, and its efficacy against E. tenella challenge was observed. The rhomboid gene of E. tenella and chIL-2 gene were subcloned into integrative expression vector pMV361, producing vaccines rBCG pMV361-rho and pMV361-rho-IL2. Animal experiment via intranasal and subcutaneous route in chickens was carried out to evaluate the immune efficacy of the vaccines. The results indicated that these rBCG vaccines could obviously alleviate cacal lesions and oocyst output. Intranasal immunization with pMV361-rho and pMV361-rho-IL2 elicited better protective immunity against E. tenella than subcutaneous immunization. Splenocytes from chickens immunized with either rBCG pMV361-rho and pMV361-rho-IL2 had increased CD4+ and CD8+ cell production. Our data indicate recombinant BCG is able to impart partial protection against E. tenella challenge and co-expression of cytokine with antigen was an effective strategy to improve vaccine immunity.
Adjuvants, Immunologic/genetics/*metabolism
;
Administration, Intranasal
;
Animals
;
Antigens, Protozoan/genetics/*immunology
;
BCG Vaccine/administration & dosage/*genetics
;
CD4-Positive T-Lymphocytes/immunology
;
CD8-Positive T-Lymphocytes/immunology
;
Chickens
;
Coccidiosis/*prevention & control
;
Disease Models, Animal
;
Drug Carriers/administration & dosage
;
Eimeria tenella/genetics/*immunology
;
Genetic Vectors
;
Injections, Subcutaneous
;
Interleukin-2/genetics/*metabolism
;
Protozoan Vaccines/administration & dosage/genetics/*immunology
;
Spleen/immunology
;
Vaccines, Synthetic/administration & dosage/genetics/immunology

Result Analysis
Print
Save
E-mail