1.Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies
Doyeong KIM ; Seonghun JEONG ; Sang-Min PARK
The Korean Journal of Physiology and Pharmacology 2024;28(5):403-411
The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools.RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNAseq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.
2.Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies
Doyeong KIM ; Seonghun JEONG ; Sang-Min PARK
The Korean Journal of Physiology and Pharmacology 2024;28(5):403-411
The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools.RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNAseq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.
3.Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies
Doyeong KIM ; Seonghun JEONG ; Sang-Min PARK
The Korean Journal of Physiology and Pharmacology 2024;28(5):403-411
The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools.RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNAseq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.
4.Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies
Doyeong KIM ; Seonghun JEONG ; Sang-Min PARK
The Korean Journal of Physiology and Pharmacology 2024;28(5):403-411
The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools.RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNAseq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.
5.Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies
Doyeong KIM ; Seonghun JEONG ; Sang-Min PARK
The Korean Journal of Physiology and Pharmacology 2024;28(5):403-411
The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools.RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNAseq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.
6.Production and Storage of Virus Simulants.
In Sun SHIN ; Doyeong KIM ; Sung Jun YANG ; Byoung Chul LIM ; Younggil CHA ; Seongjoo KIM ; Tae Ju CHO
Journal of Bacteriology and Virology 2018;48(2):37-48
We have examined isolation and identification protocols for three virus simulant candidates to biological warfare agents. MS2 phage, a simulant for yellow fever virus and Hantaan virus, was propagated using as a host an E. coli strain with F pilus. MS2 phage genome was examined by reverse transcription and polymerase chain reaction (RT-PCR). Coat protein of the phage preparation was examined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric analysis. Cydia pomonella granulosis virus (CpGV) is a virus simulant candidate to smallpox virus. CpGV was isolated from a commercialized CpGV pellet. In this study, we developed new isolation and identification protocols for CpGV. One disadvantage of using CpGV is that it is not easy to determine viability of the virus. Here, we have included T4 phage as an alternative. We established a high titer production protocol and developed an easy genome identification protocol that does not require purified phage DNA. Stability of these virus preparations was also examined under various storage conditions. When the virus preparations were not subjected to freeze drying, MS2 phage was most stable when it was stored in liquid nitrogen but unstable at 4℃. In contrast, T4 phage was most stable when it was stored at 4℃. CpGV was stable at −20℃ but not at 4℃. Stability during or after freeze drying was also investigated. The result showed that 70~80% MS2 survived the freeze drying process. In contrast, only about 15% of T4 phage survived during the freeze drying. CpGV was found to be degraded during freeze drying.
Bacteriophage T4
;
Bacteriophages
;
Biological Warfare Agents
;
DNA
;
Electrophoresis
;
Freeze Drying
;
Genome
;
Granulovirus
;
Hantaan virus
;
Levivirus
;
Nitrogen
;
Polymerase Chain Reaction
;
Reverse Transcription
;
Variola virus
;
Yellow fever virus
7.Cysteine-Added Mutants of Turnip Yellow Mosaic Virus.
In Sun SHIN ; Doyeong KIM ; Tae Ju CHO
Journal of Bacteriology and Virology 2018;48(4):137-146
Native turnip yellow mosaic virus (TYMV) is relatively unreactive to maleimide agents, indicating few reactive thiol groups on TYMV. In the present study, we aimed to construct TYMV mutants that have reactive cysteine residues on the surface. To this end, we prepared a library of TYMV mutants where the Thr residue at the C-terminus of coat protein (CP) was replaced by a random sequence of six amino acids that included one cysteine. This library was introduced into Nicotiana benthamiana by agroinfiltration. The CP sequence of the TYMV RNA isolated from inoculated leaves was amplified by reverse transcription-PCR and then used to construct a second library. This process was repeated one more time, and the CP sequences of the TYMV RNA in the inoculated leaves were analyzed. Based on the analysis of over 11,000 CP sequences, the Cys mutants representing most abundant TYMV RNAs were constructed. Analysis of the mutants showed that four Cys mutants were nearly comparable to wildtype with respect to CP and viral RNA levels in N. benthamiana. All these mutants were highly reactive to fluoresceine-5-maleimide. This demonstrates that TYMV can be modified to have additional functional groups on the surface that would be useful for drug delivery.
Amino Acids
;
Brassica napus*
;
Cysteine
;
RNA
;
RNA, Viral
;
Tobacco
;
Tymovirus*
8.Expression of the genes for peroxisome proliferator-activated receptor-γ, cyclooxygenase-2, and proinflammatory cytokines in granulosa cells from women with polycystic ovary syndrome.
Joong Yeup LEE ; Jin Cheol TAE ; Chung Hyon KIM ; Doyeong HWANG ; Ki Chul KIM ; Chang Suk SUH ; Seok Hyun KIM
Clinical and Experimental Reproductive Medicine 2017;44(3):146-151
OBJECTIVE: To identify differences in the expression of the genes for peroxisome proliferator-activated receptor (PPAR)-γ, cyclooxygenase (COX)-2, and the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α in granulosa cells (GCs) from polycystic ovary syndrome (PCOS) patients and controls undergoing controlled ovarian stimulation. METHODS: Nine patients with PCOS and six controls were enrolled in this study. On the day of oocyte retrieval, GCs were collected from pooled follicular fluid. Total mRNA was extracted from GCs. Reverse transcription was performed and gene expression levels were quantified by realtime quantitative polymerase chain reaction. RESULTS: There were no significant differences in age, body mass index, and total gonadotropin dose, except for the ratio of luteinizing hormone to follicle-stimulating hormone between the PCOS and control groups. PPAR-γ and COX-2 mRNA was significantly downregulated in the GCs of PCOS women compared with controls (p=0.034 and p=0.018, respectively), but the expression of IL-6 and TNF-α mRNA did not show significant differences. No significant correlation was detected between the expression of these mRNA sequences and clinical characteristics, including the number of retrieved oocytes, oocyte maturity, cleavage, or the good embryo rate. Positive correlations were found among the PPAR-γ, COX-2, IL-6, and TNF-α mRNA levels. CONCLUSION: Our data may provide novel clues regarding ovarian GC dysfunction in PCOS, and indirectly provide evidence that the effect of PPAR-γ agonists in PCOS might result from alterations in the ovarian follicular environment. Further studies with a larger sample size are required to confirm these proposals.
Body Mass Index
;
Cyclooxygenase 2*
;
Cytokines*
;
Embryonic Structures
;
Female
;
Follicle Stimulating Hormone
;
Follicular Fluid
;
Gene Expression
;
Gonadotropins
;
Granulosa Cells*
;
Humans
;
Interleukin-6
;
Interleukins
;
Luteinizing Hormone
;
Oocyte Retrieval
;
Oocytes
;
Ovulation Induction
;
Peroxisomes*
;
Polycystic Ovary Syndrome*
;
Polymerase Chain Reaction
;
PPAR gamma
;
Prostaglandin-Endoperoxide Synthases
;
Reverse Transcription
;
RNA, Messenger
;
Sample Size
;
Tumor Necrosis Factor-alpha
9.Replication of Recombinant Flock House Virus RNA Encapsidated by Turnip Yellow Mosaic Virus Coat Proteins in Nicotiana benthamiana.
Journal of Bacteriology and Virology 2017;47(2):87-95
It was previously observed that recombinant flock house virus (FHV) RNA1 was efficiently packaged into turnip yellow mosaic virus (TYMV), provided that the TYMV coat protein (CP) sequence was present at the 3′-end. FHV RNA encapsidated by TYMV CPs also had a four-nucleotide extension at the 5′-end. Since even a short extension at the 5′- and 3′-ends of FHV RNA1 inhibits replication, we examined whether the recombinant FHV RNA is indeed capable of replication. To this end, we introduced constructs expressing recombinant FHV RNAs into the plant Nicotiana benthamiana. Northern blot analysis of inoculated leaves suggested abundant production of recombinant FHV RNA1 and its subgenomic RNA. This demonstrated that recombinant FHV RNA with terminal extensions at both ends was competent for replication. We also showed that the recombinant FHV RNA can express the reporter gene encoding enhanced green fluorescent protein.
Blotting, Northern
;
Brassica napus*
;
Capsid Proteins*
;
Genes, Reporter
;
Plants
;
RNA*
;
Tobacco*
;
Tymovirus*
10.SNP-Based Fetal DNA Detection in Maternal Serum Using the HID-Ion AmpliSeq™ Identity Panel.
Sohee CHO ; Ji Hyun LEE ; Chong Jai KIM ; Moon Young KIM ; Kun Woo KIM ; Doyeong HWANG ; Soong Deok LEE
Korean Journal of Legal Medicine 2017;41(2):41-45
Fetal DNA (fDNA) detection in maternal serum is a challenge due to low copy number and the smaller size of fDNA fragments compared to DNA fragments derived from the mother. Massively parallel sequencing (MPS) is a useful technique for fetal genetic analysis that is able to detect and quantify small amounts of DNA. In this study, seven clinical samples of maternal serum potentially containing fDNA were analyzed with a commercial single nucleotide polymorphism (SNP) panel, the HID-Ion AmpliSeq™ Identity Panel, and the results were compared to those from previous studies. Reference profiles for mothers and fetuses were not available, but multiple Y chromosomal SNPs were detected in two samples, indicating that fDNA was present in the serum and thereby validating observations of autosomal SNPs. This suggests that SNP-based MPS can be valuable for fDNA detection, thereby offering an insight into fetal genetic status. This technology could also be used to detect small amounts of DNA in mixed DNA samples for forensic applications.
DNA*
;
Fetus
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Mothers
;
Polymorphism, Single Nucleotide

Result Analysis
Print
Save
E-mail