1.Research progress of the dopamine system in neurological diseases.
Yu-Qi NIU ; Jin-Jin WANG ; Wen-Fei CUI ; Peng QIN ; Jian-Feng GAO
Acta Physiologica Sinica 2025;77(2):309-317
The etiology of nervous system diseases is complicated, posing significant harm to patients and often resulting in poor prognoses. In recent years, the role of dopaminergic system in nervous system diseases has attracted much attention, and its complex regulatory mechanism and therapeutic potential have been gradually revealed. This paper reviews the role of dopaminergic neurons, the neurotransmitter dopamine, dopamine receptors and dopamine transporters in neurological diseases (including Alzheimer's disease, Parkinson's disease and schizophrenia), with a view to further elucidating the disease mechanism and providing new insights and strategies for the treatment of neurological diseases.
Humans
;
Dopamine/metabolism*
;
Nervous System Diseases/physiopathology*
;
Parkinson Disease/physiopathology*
;
Receptors, Dopamine/metabolism*
;
Dopaminergic Neurons/physiology*
;
Dopamine Plasma Membrane Transport Proteins/metabolism*
;
Alzheimer Disease/physiopathology*
;
Schizophrenia/physiopathology*
;
Animals
2.Circadian rhythm disturbances and neurodevelopmental disorders.
Deng-Feng LIU ; Yi-Chun ZHANG ; Jia-Da LI
Acta Physiologica Sinica 2025;77(4):678-688
Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and intellectual developmental disorder (IDD), are highly prevalent and lack effective treatments, posing significant health challenges. These disorders are frequently comorbid with disruptions in sleep rhythms, and sleep-related indicators are often used to assess disease severity and treatment efficacy. Recent evidence has highlighted the crucial roles of circadian rhythm disturbances and circadian clock gene mutations in the pathogenesis of NDDs. This review focuses on the mechanisms by which circadian rhythm disruptions and circadian clock gene mutations contribute to cognitive, behavioral, and emotional disorders associated with NDDs, particularly through the dysregulation of dopamine system. Additionally, we discussed the potential of targeting the circadian system as novel therapeutic strategies for the treatment of NDDs.
Humans
;
Neurodevelopmental Disorders/genetics*
;
Attention Deficit Disorder with Hyperactivity/genetics*
;
Circadian Rhythm/genetics*
;
Autism Spectrum Disorder/genetics*
;
Mutation
;
Intellectual Disability/genetics*
;
Circadian Clocks/physiology*
;
Dopamine/metabolism*
3.Research progress on the role of dopamine system in regulating hippocampal related brain functions.
Jing REN ; Wei-Yi MO ; Ling WANG ; Guang-Jian NI ; Jia-Jia YANG
Acta Physiologica Sinica 2025;77(5):893-904
Dopamine, as a catecholamine neurotransmitter widely distributed in the central nervous system, is involved in physiological functions such as motivation, arousal, reinforcement, and movement through various dopamine signaling pathways. The hippocampus receives dopaminergic neuron projections from regions such as the ventral tegmental area, locus coeruleus, and substantia nigra. Through D1-like and D2-like receptors, dopamine exerts significant regulatory effects such as spatial navigation, episodic memory, fear, anxiety, and reward. This review mainly summarizes the research progress on the functions of dopamine in the hippocampus from aspects including the sources of dopamine, receptor distribution and function, and the association of hippocampal dopamine system dysregulation with neurodegenerative diseases. The aim is to provide insights into the involvement of the dopamine system in hippocampal functions and the diagnosis and treatment of related diseases.
Hippocampus/physiology*
;
Dopamine/physiology*
;
Humans
;
Animals
;
Receptors, Dopamine D2/physiology*
;
Memory/physiology*
;
Signal Transduction/physiology*
;
Neurodegenerative Diseases/physiopathology*
4.Research Advancements in the Role of the Brain Dopaminergic System in General Anesthesia.
Wei LUO ; Cheng-Dong YUAN ; Meng-Nan HAO ; Jie ZHANG ; Yi ZHANG
Acta Academiae Medicinae Sinicae 2025;47(3):441-446
General anesthesia is widely used in clinical practice,whereas the exact mechanism behind the general anesthetic-induced reversible loss of consciousness remains unclear.Recent studies have revealed a close relationship between the dopaminergic system and general anesthetic-induced loss of consciousness.This system,encompassing dopamine neurons,dopamine receptors,and related neural pathways,regulates functions such as movement,memory,arousal,and cognition.The dopaminergic neurons in the ventral periaqueductal gray and ventral tegmental area,along with D1 receptors,have been shown to facilitate emergence from anesthesia.However,the role of D2 receptors remains controversial.This review summarizes recent advancements in the role of the dopaminergic system in general anesthesia and the underlying mechanism,with the aim of clarifying the mechanism of general anesthesia and providing a theoretical basis for preventing delayed emergence from anesthesia.
Humans
;
Anesthesia, General
;
Brain/metabolism*
;
Dopaminergic Neurons/physiology*
;
Dopamine/physiology*
;
Animals
5.Dopamine D2 receptor may be involved in the regulation of cortical-striatum synaptic transmission and autonomic activity in PD mice by exercise.
Gang ZHAO ; Dan-Yu ZHANG ; Xiao-Li LIU ; De-Cai QIAO
Acta Physiologica Sinica 2019;71(4):547-554
The aim of the present study was to reveal the role of cortical-striatum postsynaptic dopamine D2 receptor (D2R) in improving motor behavioral dysfunction in Parkinson's disease (PD) mice by exercise. C57/BL6 male adult mice were randomly divided into control, PD and PD plus exercise groups. The mice were injected with 6-OHDA in striatum to establish a unilateral injury PD model. The exercise intervention program was uniform speed running (16 m/min, 40 min/d, 5 d per week for 4 weeks). Autonomic activity of mice was tested by open field test. Cortical-striatum synaptic transmission efficiency was assessed by peak amplitude of field excitatory postsynaptic potential (fEPSP) recorded from in vitro brain slides. Meanwhile, the effects of D2R agonist on autonomic activity and cortical-striatal synaptic transmission were observed. The results showed that, compared with PD group, PD plus exercise group exhibited significantly increased autonomic motor distance and proportion of fast-moving (P < 0.05), as well as decreased maximum amplitude of fEPSP under increasing stimulation intensity (0.75-3.00 pA) (P < 0.05) and slope of stimulus-response curve. Compared with PD mice without D2R agonist, the movement distance and rapid movement ratio of PD mice treated with D2R agonist were increased significantly (P < 0.05), whereas fEPSP peak amplitude (P < 0.05) and the slope of stimulus-response curve were decreased. These results indicate that either early exercise intervention or D2R agonist treatment can inhibit the abnormal increase of cortical-striatum synaptic transmission and improve the autonomic motor ability in PD mice, suggesting that the cortical-striatum synaptic D2R may be an important molecular target for exercise to improve the autonomic motor ability of PD mice.
Animals
;
Corpus Striatum
;
physiology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Oxidopamine
;
Parkinson Disease
;
physiopathology
;
therapy
;
Physical Conditioning, Animal
;
Random Allocation
;
Receptors, Dopamine D2
;
agonists
;
physiology
;
Synaptic Transmission
7.Electroacupuncture Alleviates Motor Symptoms and Up-Regulates Vesicular Glutamatergic Transporter 1 Expression in the Subthalamic Nucleus in a Unilateral 6-Hydroxydopamine-Lesioned Hemi-Parkinsonian Rat Model.
Yanyan WANG ; Yong WANG ; Junhua LIU ; Xiaomin WANG
Neuroscience Bulletin 2018;34(3):476-484
Previous studies have shown that electroacupuncture (EA) promotes recovery of motor function in Parkinson's disease (PD). However the mechanisms are not completely understood. Clinically, the subthalamic nucleus (STN) is a critical target for deep brain stimulation treatment of PD, and vesicular glutamate transporter 1 (VGluT1) plays an important role in the modulation of glutamate in the STN derived from the cortex. In this study, a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was treated with 100 Hz EA for 4 weeks. Immunohistochemical analysis of tyrosine hydroxylase (TH) showed that EA treatment had no effect on TH expression in the ipsilateral striatum or substantia nigra pars compacta, though it alleviated several of the parkinsonian motor symptoms. Compared with the hemi-parkinsonian rats without EA treatment, the 100 Hz EA treatment significantly decreased apomorphine-induced rotation and increased the latency in the Rotarod test. Notably, the EA treatment reversed the 6-OHDA-induced down-regulation of VGluT1 in the STN. The results demonstrated that EA alleviated motor symptoms and up-regulated VGluT1 in the ipsilateral STN of hemi-parkinsonian rats, suggesting that up-regulation of VGluT1 in the STN may be related to the effects of EA on parkinsonian motor symptoms via restoration of function in the cortico-STN pathway.
Adrenergic Agents
;
toxicity
;
Animals
;
Apomorphine
;
pharmacology
;
Disease Models, Animal
;
Dopamine Agonists
;
pharmacology
;
Electroacupuncture
;
methods
;
Functional Laterality
;
drug effects
;
Male
;
Medial Forebrain Bundle
;
injuries
;
Motor Activity
;
drug effects
;
physiology
;
Neurons
;
drug effects
;
metabolism
;
Oxidopamine
;
toxicity
;
Parkinson Disease, Secondary
;
chemically induced
;
physiopathology
;
therapy
;
Rats
;
Rats, Sprague-Dawley
;
Subthalamic Nucleus
;
drug effects
;
metabolism
;
pathology
;
Tyrosine 3-Monooxygenase
;
metabolism
;
Up-Regulation
;
drug effects
;
physiology
;
Vesicular Glutamate Transport Protein 1
;
metabolism
8.Distribution of D1 and D2-dopamine receptors in calcium-binding-protein expressing interneurons in rat anterior cingulate cortex.
Acta Physiologica Sinica 2015;67(2):163-172
Dopamine plays an important role in cognitive functions including decision making, attention, learning and memory in the anterior cingulate cortex (ACC). However, little is known about dopamine receptors (DAR) expression patterns in ACC neurons, especially GABAergic interneurons. The aim of the present study was to investigate the expression of the most abundant DAR subtypes, D1 receptors (D1Rs) and D2 receptors (D2Rs), in major types of GABAergic interneurons in rat ACC, including parvalbumin (PV)-, calretinin (CR)-, and calbindin D-28k (CB)-containing interneurons. Double immunofluorescence staining and confocal scanning were used to detect protein expression in rat brain sections. The results showed a high proportion of PV-containing interneurons express D1Rs and D2Rs, while a low proportion of CR-positive interneurons express D1Rs and D2Rs. D1R- and D2R-expressing PV interneurons are more prevalently distributed in deep layers than superficial layers of ACC. Moreover, we found the proportion of D2Rs expressed in CR cells is much greater than that of D1Rs. These regional and interneuron type-specific differences of D1Rs and D2Rs indicate functionally distinct roles for dopamine in modulating ACC activities via stimulating D1Rs and D2Rs.
Animals
;
Calbindin 1
;
physiology
;
Calbindin 2
;
physiology
;
Calcium-Binding Proteins
;
physiology
;
Dopamine
;
physiology
;
Gyrus Cinguli
;
cytology
;
Interneurons
;
physiology
;
Parvalbumins
;
physiology
;
Rats
;
Receptors, Dopamine D1
;
physiology
;
Receptors, Dopamine D2
;
physiology
9.Stereological study of the placenta in patients receiving different vasopressors for hypotension during cesarean section.
Tianxing XU ; Yalan LI ; Jincai ZHOU ; Bing SHUAI ; Yan LI ; Weitu MAI ; Yannian YAN ; Cai NIE ; Jianling LI
Journal of Southern Medical University 2014;34(8):1154-1157
OBJECTIVETo study the effects of dopamine and phenylephrine for treatment of hypotension during cesarean section under combined spinal epidural anesthesia (CSEA) on the stereology of the placenta.
METHODSForty puerperants undergoing cesarean section under CSEA were randomly divided into dopamine group and phenylephrine group. Ropivacaine (16 mg) was administered immediately after spinal anethesia. Blood pressure was maintained near the baseline by adjusting the drug infusion rate. Fetal blood gas, Apgar score, and placental villus microvascular stereological changes were observed during the operation.
RESULTSThe microvascular density was significantly lower in dopamine group than in phenylephrine group (P<0.05). Phenylephrine group showed significantly lower umbilical artery blood pH than dopamine group (P<0.05). The Apgar score and blood pressure were comparable between the two groups (P>0.05). Compared to the baseline, both of the two groups showed significantly lowered heart rate during the operation (P<0.01).
CONCLUSIONDopamine is associated with the risk of fetal acidosis. Phenylephrine is helpful for preventing hypotension by increasing placental blood flow and improving oxygen supply to ensure maternal and fetal safety during cesarean section.
Amides ; administration & dosage ; Anesthesia, Spinal ; Apgar Score ; Blood Gas Analysis ; Blood Pressure ; Cesarean Section ; Dopamine ; administration & dosage ; Female ; Fetal Blood ; Fetus ; Heart Rate ; Humans ; Hypotension ; drug therapy ; Infant, Newborn ; Oxygen ; Phenylephrine ; administration & dosage ; Placenta ; drug effects ; physiology ; Pregnancy ; Vasoconstrictor Agents ; administration & dosage
10.The effects of DR2 on myocardial ischemic postconditioning and its underlying mechanisms.
Hong-Zhu LI ; Jun GAO ; Xiao-Min HAO ; Li-Min ZHANG ; Jun-Ting CHEN
Chinese Journal of Applied Physiology 2014;30(4):301-305
OBJECTIVETo study the effects of dopamin receptors-2 (DR2) on myocardial ischemic postconditioning and explore its underlying mechanisms.
METHODSThe myocardial ischemic postconditioning (PC) model was established in cultured primary rat neonatal cardiomyocytes which were then randomly assigned in the following groups: Nomial control group, Isehemia/reperfusion (L'R) group, PC (ischemic postconditioning) group, PC + Bro (Bromocriptine, a DB2 antagonist) group, PC + Hal (Haloperidol, a DB2 repressor) and PC + Hal + Bro groups. The lactate dehydrogenase (LDH) and superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in cell medium were analyzed by colorunetry. The cell ultrastructure changes were observed by transmission electron microscope. The cell apoptosis was analyzed using flowcytometiy. The protein expression level of D112 and activity of p-p38 and p-JNK were detected by Western blot.
RESULTSCompared with the nonnal control group, hR increased the protein expression level of DB2, enhanced LDH activity and MDA content, promoted cell injury and apoptosis, decreased SOD activity, up-regulated the activity of p-p38 and p-JNK. Compared with the hR group, although PC further increased the expression of DR2 protein, it decreased LDH activity and MDA content, cell injury and apoptosis, increased SOD activity, down-regulated activity of p-p38 and p-JNK. Bromocriptine treatment further enhanced PC-induced canlioprotective effect, yet Hal addition attenuated this enhancing effect exerted by bromocriptine.
CONCLUSIONThe activation of DB2 is involved in the protective effect of ischemic postconditioning on myocardial ischemia/reperfusion injury through down-regulating the activity of p-p38 and p-JNK.
Animals ; Apoptosis ; Cells, Cultured ; Ischemic Postconditioning ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Myocardial Reperfusion Injury ; prevention & control ; Myocytes, Cardiac ; pathology ; Rats ; Rats, Wistar ; Receptors, Dopamine D2 ; physiology ; p38 Mitogen-Activated Protein Kinases ; metabolism

Result Analysis
Print
Save
E-mail