1.Research progress of the dopamine system in neurological diseases.
Yu-Qi NIU ; Jin-Jin WANG ; Wen-Fei CUI ; Peng QIN ; Jian-Feng GAO
Acta Physiologica Sinica 2025;77(2):309-317
The etiology of nervous system diseases is complicated, posing significant harm to patients and often resulting in poor prognoses. In recent years, the role of dopaminergic system in nervous system diseases has attracted much attention, and its complex regulatory mechanism and therapeutic potential have been gradually revealed. This paper reviews the role of dopaminergic neurons, the neurotransmitter dopamine, dopamine receptors and dopamine transporters in neurological diseases (including Alzheimer's disease, Parkinson's disease and schizophrenia), with a view to further elucidating the disease mechanism and providing new insights and strategies for the treatment of neurological diseases.
Humans
;
Dopamine/metabolism*
;
Nervous System Diseases/physiopathology*
;
Parkinson Disease/physiopathology*
;
Receptors, Dopamine/metabolism*
;
Dopaminergic Neurons/physiology*
;
Dopamine Plasma Membrane Transport Proteins/metabolism*
;
Alzheimer Disease/physiopathology*
;
Schizophrenia/physiopathology*
;
Animals
2.Circadian rhythm disturbances and neurodevelopmental disorders.
Deng-Feng LIU ; Yi-Chun ZHANG ; Jia-Da LI
Acta Physiologica Sinica 2025;77(4):678-688
Neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and intellectual developmental disorder (IDD), are highly prevalent and lack effective treatments, posing significant health challenges. These disorders are frequently comorbid with disruptions in sleep rhythms, and sleep-related indicators are often used to assess disease severity and treatment efficacy. Recent evidence has highlighted the crucial roles of circadian rhythm disturbances and circadian clock gene mutations in the pathogenesis of NDDs. This review focuses on the mechanisms by which circadian rhythm disruptions and circadian clock gene mutations contribute to cognitive, behavioral, and emotional disorders associated with NDDs, particularly through the dysregulation of dopamine system. Additionally, we discussed the potential of targeting the circadian system as novel therapeutic strategies for the treatment of NDDs.
Humans
;
Neurodevelopmental Disorders/genetics*
;
Attention Deficit Disorder with Hyperactivity/genetics*
;
Circadian Rhythm/genetics*
;
Autism Spectrum Disorder/genetics*
;
Mutation
;
Intellectual Disability/genetics*
;
Circadian Clocks/physiology*
;
Dopamine/metabolism*
3.Neuroprotective effects of idebenone combined with borneol via the dopamine signaling pathway in a transgenic zebrafish model of Parkinson's disease.
Qifei WANG ; Yayun ZHONG ; Yanan YANG ; Kechun LIU ; Li LIU ; Yun ZHANG
Journal of Biomedical Engineering 2025;42(5):1046-1053
The aim of this study is to investigate the protective effect of idebenone (IDE) combined with borneol (BO) against Parkinson's disease (PD). In this study, wild-type AB zebrafish and transgenic Tg ( vmat2: GFP) zebrafish with green fluorescence labeled dopamine neurons were used to establish the PD model with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP). Following drug treatment, the behavioral performance and dopamine neuron morphology of zebrafish were evaluated, and regulation of dopamine signaling pathway-related genes was determined using RT-qPCR. The results showed that IDE combined with BO improved the behavioral disorders of zebrafish such as bradykinesia and shortening movement distance, also effectively reversed the damage of MPTP-induced dopaminergic neurons. At the same time, the expression of dopamine synthesis and transportation-related genes was up-regulated, and the normal function of the signal transduction pathway was restored. The combination showed a better therapeutic effect compared to the IDE monotherapy group. This study reveals the protective mechanism of IDE combined with BO on the central nervous system for the first time, which provides an important experimental basis and theoretical reference for clinical combination strategy in PD treatment.
Animals
;
Zebrafish
;
Signal Transduction/drug effects*
;
Animals, Genetically Modified
;
Dopamine/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Disease Models, Animal
;
Camphanes/pharmacology*
;
Ubiquinone/pharmacology*
;
Parkinson Disease/drug therapy*
;
Dopaminergic Neurons/metabolism*
4.Early life Bifidobacterium bifidum BD-1 intervention alleviates hyperactivity of juvenile female rats with attention deficit hyperactivity disorder.
Yang YANG ; Kai WANG ; Jianxiu LIU ; Zhimo ZHOU ; Wen JIA ; Simou WU ; Jinxing LI ; Fang HE ; Ruyue CHENG
Journal of Southern Medical University 2025;45(4):702-710
OBJECTIVES:
To investigate the effects of early life intervention with Bifidobacterium bifidum BD-1 (B. bifidum BD-1) on hyperactivity in a female mouse model of attention deficit hyperactivity disorder (ADHD) and explore the underlying mechanisms.
METHODS:
Eight newborn female Wistar-Kyoto (WKY) rats and 6 spontaneous hypertensive rats (SHRs) were gavaged with saline and another 6 SHRs were gavaged with B. bifidum BD-1 (109 CFU) daily for 3 weeks. Open field test of the rats was conducted at 7 weeks, and fecal samples were collected at weaning (3 weeks) and at 7 weeks for 16S rRNA sequencing. Immunofluorescent staining was used to detect dopamine transporter (DAT) and tyrosine hydroxylase (Th) levels in the striatum and activated microglia in the prefrontal cortex. Treg cells in the mesenteric lymph nodes, spleen and blood were analyzed using flow cytometry.
RESULTS:
The SHRs traveled a significantly greater distance in open fields test than WKY rats, and this behavior was significantly attenuated by B. bifidum BD-1 intervention. The expression of DAT and Th in the striatum was significantly lower in the SHRs than in WKY rats, while B. bifidum BD-1 treatment obviously increased Th levels in the SHRs. B. bifidum BD-1 intervention significantly deceased the number of activated microglia and increased Treg cell counts in the spleen of SHRs. The treatment also enhanced α diversity in gut microbiota of the SHRs and resulted in a decreased Firmicutes/Bacteroidota ratio, more active Muribaculaceae growth, and suppression of Clostridia_UCG-014 proliferation.
CONCLUSIONS
Early life intervention with B. bifidum BD-1 alleviates hyperactivity in female SHRs by modulating the gut microbiota and peripheral immune response, suppressing neuroinflammation and improving dopaminergic system function. These findings provide evidence for early prevention strategies and support the development and application of psychobiotics for ADHD.
Animals
;
Female
;
Rats
;
Rats, Inbred WKY
;
Rats, Inbred SHR
;
Attention Deficit Disorder with Hyperactivity/therapy*
;
Bifidobacterium bifidum
;
Probiotics/therapeutic use*
;
Dopamine Plasma Membrane Transport Proteins/metabolism*
;
Tyrosine 3-Monooxygenase/metabolism*
;
Gastrointestinal Microbiome
;
Disease Models, Animal
5.Research progress of neurotransmitters in lung injury after traumatic brain injury.
Le CAO ; Haikun ZHANG ; Jinxiang YU ; Pengcheng MA ; Lifeng JIA ; Tao ZHAO
Chinese Critical Care Medicine 2025;37(10):982-988
Traumatic brain injury (TBI), as a significant central nervous system damage disease with high frequency in the world, leads to a huge number of patients with impaired health and lower quality of life every year. Lung injury is a common and dangerous consequence, which dramatically raises the mortality of patients. Discovering the pathophysiology of lung injury after TBI and discovering viable therapeutic targets has become an important need for clinical diagnosis and therapy. Neurotransmitters, as the fundamental chemical agents of the nervous system for signal transmission, not only govern neuronal activity and apoptosis in TBI but also significantly influence the pathophysiological mechanisms of lung injury subsequent to TBI. The imbalance is intricately linked to the onset and progression of lung damage. This paper systematically reviews the clinical characteristics and predominant pathogenesis of lung injury following TBI, emphasizing the role of key neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA), norepinephrine (NE), dopamine (DA), and acetylcholine (ACh), in lung injury post-TBI. It examines their influence on inflammatory response, vascular permeability, and pulmonary circulation function. Additionally, the paper evaluates the research advancements and potential applications of targeted therapeutic strategies for various neurotransmitter systems, such as receptor antagonists, transporter inhibitors, and neurotransmitter analogues. This research aims to offer a theoretical framework for clarifying the neural regulatory mechanisms of lung injury following TBI and to establish a basis for the development of novel therapeutic strategies and enhancement of the prognosis of the patients.
Humans
;
Brain Injuries, Traumatic/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Lung Injury/metabolism*
;
gamma-Aminobutyric Acid/metabolism*
;
Glutamic Acid/metabolism*
;
Norepinephrine/metabolism*
;
Dopamine/metabolism*
;
Acetylcholine/metabolism*
6.In vitro osteogenic performance study of graphene oxide-coated titanium surfaces modified with dopamine or silane.
Qinglin WU ; Yingzhen LAI ; Yanling HUANG ; Zeyu XIE ; Yanyin LIN
West China Journal of Stomatology 2025;43(3):336-345
OBJECTIVES:
This study aimed to compare the osteogenic performance differences of titanium surface coatings modified by dopamine or silanized graphene oxide, and to provide a more suitable modification scheme for titanium surface graphene oxide coatings.
METHODS:
Titanium was subjected to alkali-heat treatment and then modified with dopamine and silanization, respectively, followed by coating with graphene oxide. Control and experimental groups were designed as follows: pure titanium (Ti) group; titanium after alkali-heat treatment (Ti-NaOH) group; titanium after alkali-heat treatment and silanization modification (Ti-APTES) group; titanium after alkali-heat treatment and dopamine modification (Ti-DOPA) group; titanium with silanization-modified surface decorated with graphene oxide (Ti-APTES/GO) group; titanium with dopamine-modified surface decorated with graphene oxide (Ti-DOPA/GO) group. The physical and chemical properties of the material surfaces were analyzed using scanning electron microscopy (SEM), contact angle goniometer, X-ray photoelectron spectroscopy (XPS), and Raman spectrometer. The proliferation and adhesion morphology of mouse embryonic osteoblast precursor cells MC3T3-E1 on the material surfaces were observed by cell viability detection and immunofluorescence staining followed by laser confocal microscopy. The effects on the osteogenic differentiation of MC3T3-E1 cells were studied by alkaline phosphatase (ALP) staining, alizarin red staining and quantification, and real-time quantitative polymerase chain reaction.
RESULTS:
After modification with graphene oxide coating, a thin-film-like structure was observed on the surface under SEM. The hydrophilicity of all experimental groups was improved, among which the Ti-DOPA/GO group had the best hydrophilicity. XPS and Raman spectroscopy analysis showed that the modified materials exhibited typical D and G peaks, and XPS revealed the presence of a large number of oxygen-containing functional groups on the surface. CCK8 assay showed that all groups of materials had no cytotoxicity, and the proliferation level of the Ti-APTES/GO group was higher than that of the Ti-DOPA/GO group. Under the laser confocal microscope, the cells in the Ti-DOPA/GO and Ti-APTES/GO groups spread more fully. The Ti-DOPA/GO and Ti-APTES/GO groups had the deepest ALP staining, and the Ti-APTES/GO group had the most alizarin red-stained mineralized nodules and the highest quantitative result of alizarin red staining. In the Ti-DOPA/GO and Ti-APTES/GO groups, the expression of the early osteogenic-related gene RUNX2 reached a relatively high level, while in the expression of the late osteogenic-related genes OPN and OCN, the Ti-APTES/GO group performed better than the Ti-DOPA/GO group.
CONCLUSIONS
Ti-APTES/GO significantly outperformed Ti-DOPA/GO in promoting the adhesion, proliferation, and in vitro osteogenic differentiation of MC3T3-E1 cells.
Titanium/chemistry*
;
Graphite/chemistry*
;
Dopamine/chemistry*
;
Animals
;
Mice
;
Osteogenesis
;
Osteoblasts/cytology*
;
Surface Properties
;
Cell Proliferation
;
Silanes/chemistry*
;
Cell Adhesion
;
Coated Materials, Biocompatible/chemistry*
;
Cell Differentiation
;
Alkaline Phosphatase/metabolism*
;
Microscopy, Electron, Scanning
7.Research Advancements in the Role of the Brain Dopaminergic System in General Anesthesia.
Wei LUO ; Cheng-Dong YUAN ; Meng-Nan HAO ; Jie ZHANG ; Yi ZHANG
Acta Academiae Medicinae Sinicae 2025;47(3):441-446
General anesthesia is widely used in clinical practice,whereas the exact mechanism behind the general anesthetic-induced reversible loss of consciousness remains unclear.Recent studies have revealed a close relationship between the dopaminergic system and general anesthetic-induced loss of consciousness.This system,encompassing dopamine neurons,dopamine receptors,and related neural pathways,regulates functions such as movement,memory,arousal,and cognition.The dopaminergic neurons in the ventral periaqueductal gray and ventral tegmental area,along with D1 receptors,have been shown to facilitate emergence from anesthesia.However,the role of D2 receptors remains controversial.This review summarizes recent advancements in the role of the dopaminergic system in general anesthesia and the underlying mechanism,with the aim of clarifying the mechanism of general anesthesia and providing a theoretical basis for preventing delayed emergence from anesthesia.
Humans
;
Anesthesia, General
;
Brain/metabolism*
;
Dopaminergic Neurons/physiology*
;
Dopamine/physiology*
;
Animals
8.The Dynamics of Dopamine D2 Receptor-Expressing Striatal Neurons and the Downstream Circuit Underlying L-Dopa-Induced Dyskinesia in Rats.
Kuncheng LIU ; Miaomiao SONG ; Shasha GAO ; Lu YAO ; Li ZHANG ; Jie FENG ; Ling WANG ; Rui GAO ; Yong WANG
Neuroscience Bulletin 2023;39(9):1411-1425
L-dopa (l-3,4-dihydroxyphenylalanine)-induced dyskinesia (LID) is a debilitating complication of dopamine replacement therapy for Parkinson's disease. The potential contribution of striatal D2 receptor (D2R)-positive neurons and downstream circuits in the pathophysiology of LID remains unclear. In this study, we investigated the role of striatal D2R+ neurons and downstream globus pallidus externa (GPe) neurons in a rat model of LID. Intrastriatal administration of raclopride, a D2R antagonist, significantly inhibited dyskinetic behavior, while intrastriatal administration of pramipexole, a D2-like receptor agonist, yielded aggravation of dyskinesia in LID rats. Fiber photometry revealed the overinhibition of striatal D2R+ neurons and hyperactivity of downstream GPe neurons during the dyskinetic phase of LID rats. In contrast, the striatal D2R+ neurons showed intermittent synchronized overactivity in the decay phase of dyskinesia. Consistent with the above findings, optogenetic activation of striatal D2R+ neurons or their projections in the GPe was adequate to suppress most of the dyskinetic behaviors of LID rats. Our data demonstrate that the aberrant activity of striatal D2R+ neurons and downstream GPe neurons is a decisive mechanism mediating dyskinetic symptoms in LID rats.
Rats
;
Animals
;
Levodopa/toxicity*
;
Dopamine
;
Parkinsonian Disorders/drug therapy*
;
Oxidopamine
;
Dyskinesia, Drug-Induced
;
Corpus Striatum/metabolism*
;
Neurons/metabolism*
;
Receptors, Dopamine D2/metabolism*
;
Antiparkinson Agents/toxicity*
9.Blockade of the Dopamine D3 Receptor Attenuates Opioids-Induced Addictive Behaviours Associated with Inhibiting the Mesolimbic Dopamine System.
Rong-Rong HU ; Meng-Die YANG ; Xiao-Yan DING ; Ning WU ; Jin LI ; Rui SONG
Neuroscience Bulletin 2023;39(11):1655-1668
Opioid use disorder (OUD) has become a considerable global public health challenge; however, potential medications for the management of OUD that are effective, safe, and nonaddictive are not available. Accumulating preclinical evidence indicates that antagonists of the dopamine D3 receptor (D3R) have effects on addiction in different animal models. We have previously reported that YQA14, a D3R antagonist, exhibits very high affinity and selectivity for D3Rs over D2Rs, and is able to inhibit cocaine- or methamphetamine-induced reinforcement and reinstatement in self-administration tests. In the present study, our results illustrated that YQA14 dose-dependently reduced infusions under the fixed-ratio 2 procedure and lowered the breakpoint under the progressive-ratio procedure in heroin self-administered rats, also attenuated heroin-induced reinstatement of drug-seeking behavior. On the other hand, YQA14 not only reduced morphine-induced expression of conditioned place preference but also facilitated the extinguishing process in mice. Moreover, we elucidated that YQA14 attenuated opioid-induced reward or reinforcement mainly by inhibiting morphine-induced up-regulation of dopaminergic neuron activity in the ventral tegmental area and decreasing dopamine release in the nucleus accumbens with a fiber photometry recording system. These findings suggest that D3R might play a very important role in opioid addiction, and YQA14 may have pharmacotherapeutic potential in attenuating opioid-induced addictive behaviors dependent on the dopamine system.
Rats
;
Mice
;
Animals
;
Analgesics, Opioid
;
Dopamine
;
Heroin/pharmacology*
;
Dopamine Antagonists/pharmacology*
;
Receptors, Dopamine D3/metabolism*
;
Morphine/pharmacology*
;
Behavior, Addictive/drug therapy*
;
Self Administration
10.Inhalation of Cananga odorata essential oil relieves anxiety behaviors in autism-like rats via regulation of serotonin and dopamine metabolism.
Nan ZHANG ; Shu-Ting WANG ; Lei YAO
Journal of Integrative Medicine 2023;21(2):205-214
OBJECTIVE:
Anxiety is one of the most common symptoms associated with autistic spectrum disorder. The essential oil of Cananga odorata (Lam.) Hook. f. & Thomson, usually known as ylang-ylang oil (YYO), is often used in aromatherapy as a mood-regulating agent, sedative, or hypotensive agent. In the present study, the effects and mechanisms of YYO in alleviating anxiety, social and cognitive behaviors in autism-like rats were investigated.
METHODS:
The prenatal valproic acid (VPA) model was used to induce autism-like behaviors in offspring rats. The effectiveness of prenatal sodium valproate treatment (600 mg/kg) on offspring was shown by postnatal growth observation, and negative geotaxis, olfactory discrimination and Morris water maze (MWM) tests. Then three treatment groups were formed with varying exposure to atomized YYO to explore the effects of YYO on the anxiety, social and cognitive behaviors of the autistic-like offspring through the elevated plus-maze test, three-chamber social test, and MWM test. Finally, the monoamine neurotransmitters, including serotonin, dopamine and their metabolites, in the hippocampus and prefrontal cortex (PFC) of the rats were measured using a high-performance liquid chromatography.
RESULTS:
Offspring of VPA exposure rats showed autism-like behaviors. In the VPA offspring, medium-dose YYO exposure significantly elevated the time and entries into the open arms in the elevated plus-maze test, while low-dose YYO exposure significantly enhanced the social interaction time with the stranger rat in session 1 of the three-chamber social test. VPA offspring treated with YYO exposure used less time to reach the platform in the navigation test of the MWM test. YYO exposure significantly elevated the metabolism of serotonin and dopamine in the PFC of VPA offspring.
CONCLUSION
YYO exposure showed the effects in alleviating anxiety and improving cognitive and social abilities in the offspring of VPA exposure rats. The role of YYO was related to the regulation of the metabolism of serotonin and dopamine. Please cite this article as: Zhang N, Wang ST, Yao L. Inhalation of Cananga odorata essential oil relieves anxiety behaviors in autism-like rats via regulation of serotonin and dopamine metabolism. J Integr Med. 2023; 21(2): 205-214.
Pregnancy
;
Female
;
Rats
;
Animals
;
Autistic Disorder/drug therapy*
;
Oils, Volatile/therapeutic use*
;
Serotonin/metabolism*
;
Cananga/metabolism*
;
Dopamine
;
Anxiety/drug therapy*
;
Valproic Acid/pharmacology*
;
Plant Oils
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail