1.The SIRT6 gene promotes the anti-aging effects of mesenchymal stem cells in dogs.
Dongyao HAN ; Balun LI ; Miao HAN ; Hongkai TIAN ; Jiaqi GAO ; Zengyu ZHANG ; Zixi LING ; Na LI ; Jinlian HUA
Chinese Journal of Biotechnology 2025;41(7):2719-2734
Mesenchymal stem cells (MSCs) are an effective therapeutic strategy to delay aging in dogs, they are prone to aging and have poor genetic stability when cultured for a long time in vitro. Therefore, it is of great significance to explore a method to improve the anti-aging ability of MSCs. Previous studies have shown that sirtuin 6 (SIRT6) plays an important role in anti-aging. This study constructed MSCs with overexpressed SIRT6 gene. Through Giemsa staining and senescence-associated β-galactosidase staining, it was found that SIRT6 significantly enhances the anti-aging capacity of MSCs. Transmission electron microscopy imaging and the detection of oxidative stress-related indicators revealed that SIRT6 improves the anti-aging capacity of MSCs by maintaining mitochondrial homeostasis and reducing oxidative stress levels. Transcriptome sequencing analysis revealed that SIRT6 mainly acted on phosphatidylinositol-3-kinase, mitogen-activated protein kinase and other aging and inflammation related pathways. In the establishment and verification of aging models in mice and dogs, it was found that the spatial memory ability of the model mice was significantly increased after intravenous transplantation of SIRT6 overexpression cells, the organ index was also significantly changed, and the anti-oxidative capacity of the dogs and mice blood was improved. The morphology of the spleens and livers in the SIRT6 overexpression cell treatment group could be effectively restored, and the expression levels of aging and inflammation-related proteins were significantly decreased. This study provides a new idea for the study of SIRT6-mediated anti-aging of MSCs.
Animals
;
Dogs
;
Mesenchymal Stem Cells/metabolism*
;
Sirtuins/genetics*
;
Aging/physiology*
;
Mice
;
Oxidative Stress
;
Mesenchymal Stem Cell Transplantation
2.Salidroside biosynthesis pathway: the initial reaction and glycosylation of tyrosol.
Lanqing MA ; Chunmei LIU ; Hansong YU ; Jixing ZHANG ; Dongyao GAO ; Yanfang LI ; Younian WANG
Chinese Journal of Biotechnology 2012;28(3):282-294
Salidroside, the 8-O-beta-D-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing the production of salidroside by biotechnological process. Glucosylation of tyrosol is thought to be the final step in salidroside biosynthesis. In our related works, three UGT clones were isolated from the roots and the cultured cells. Our intention was to combine the catalytic specificity of these UGTs in vitro in order to change the level of salidroside in vivo by over-expression of the above UGTs. However, as the aglycone substrate of salidroside, the biosynthetic pathway of tyrosol and its regulation are less well understood. The results of related studies revealed that there are two different possibilities for the tyrosol biosynthetic pathway. One possibility is that tyrosol is produced from a p-coumaric acid precursor, which is derived mainly from phenylalanine. The second possibility is that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. Our previous work demonstrated that over-expression of the endogenous phenylalanine ammonia-lyase gene (PALrs1) and accumulation of p-coumaric acid did not facilitate tyrosol biosynthesis. In contrast, the data presented in our recent work provide in vitro and in vivo evidence that the tyrosine decarboxylase (RsTyrDC) is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. Sachalinensis.
Genetic Engineering
;
Glucosides
;
biosynthesis
;
Glycosylation
;
Phenols
;
Phenylethyl Alcohol
;
analogs & derivatives
;
chemistry
;
metabolism
;
Rhodiola
;
metabolism
;
Tyrosine
;
metabolism
;
Tyrosine Decarboxylase
;
metabolism

Result Analysis
Print
Save
E-mail