1.Application of Anti-tumor Compatibility Structure of Chinese Medicine
Lanpin CHEN ; Feng TAN ; Xiaoman WEI ; Junyi WANG ; Liu LI ; Mianhua WU ; Haibo CHENG ; Dongdong SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):198-208
Malignant tumors are one of the major diseases that endanger human life and health. Chinese medicine has unique advantages in clinical anti-tumor treatment. However, how to translate the anti-tumor effects of Chinese medicine into clinical practice is the core issue that must be addressed in the process of treating malignant tumors with traditional Chinese medicine (TCM). Unlike modern chemical drugs, the compatibility application of Chinese medicine is the key factor that determines whether Chinese medicine can achieve optimal anti-tumor efficacy and realize the goal of "enhancing efficacy and reducing toxicity". The formulation structure based on this compatibility is the basic form for the safe, efficient, and rational clinical use of anti-tumor Chinese medicine, and it mainly includes three categories: herb pairs, tri-herbal combinations, and compound compatibility. Although herb pairs have the characteristics of a simple structure and strong targeting (enhancing efficacy and reducing toxicity), they often have a single effect and cannot fully address the complex pathogenesis of tumors. As a result, herb pairs are rarely used alone in practice. Compared to herb pairs, tri-herbal combinations broaden the application scope of herbs in clinical treatment, but their therapeutic range remains limited. The traditional "sovereign, minister, assistant, and guide" compound prescription, which includes herb pairs and tri-herbal combinations, improves the efficacy of herbs in treating serious diseases, hypochondriasis, chronic diseases, and miscellaneous disorders. However, due to the limitations of its historical background, it has not been integrated with modern clinical practice and modern pharmacological research, which restricts the development of compound compatibility theory. With the emergence of modern medical technology, it has been combined with traditional compatibility theory of Chinese medicine to create an innovative modern compatibility theory. This includes the "aid medicine" theory derived from modern Chinese medicine pharmacology, which compensates for the inability of the "sovereign, minister, assistant, and guide" theory to accurately apply medicine. Additionally, the "state-targeted treatment based on syndrome differentiation" theory, developed from pharmacology and modern medicine, addresses the deficiency in disease cognition in the "sovereign, minister, assistant, and guide" theory. Under the guidance of these compatibility forms and theories, clinical anti-tumor Chinese medicine can exert its maximum anti-tumor efficacy, which is of great significance for the application of Chinese medicine in clinical tumor treatment.
2.Fingerprints,chemical pattern recognition analysis,and multi-index content determination of Jianpi hewei formula
Dongdong HE ; Hui ZONG ; Chongyang WANG ; Juanjuan WAN ; Xuepu MAO ; Chuansheng HUANG ; Xinchun WANG ; Liping WANG
China Pharmacy 2025;36(15):1876-1881
OBJECTIVE To establish HPLC fingerprint for Jianpi hewei formula (JPHWF), conduct chemical pattern recognition analysis, and determine the contents of seven components in the formula, aiming to provide a scientific basis for quality control and further research of JPHWF. METHODS Taking 15 batches of standard decoctions of JPHWF as samples, the HPLC fingerprint was established using the Similarity Evaluation System of TCM Chromatographic Fingerprint (2012 edition). Subsequently, similarity evaluation, as well as identification and attribution analysis of chromatographic peaks, were conducted. Using the common peak areas from the 15 batches of samples as variables, chemical pattern recognition analyses were performed on the samples through hierarchical cluster analysis, principal component analysis, and orthogonal partial least squares-discriminant analysis. The contents of adenine, 5-hydroxymethylfurfural, tetrahydropalmatine, naringin, dehydrocorydaline, neohesperidin and glycyrrhizic acid in 15 batches of samples were determined by HPLC. RESULTS There were 19 common peaks in the characteristic chromatograms for 15 batches of samples with the similarities of more than 0.95. Results of chemical pattern recognition analysis showed that 15 batches of samples could be clustered into 3 categories, and 3 differential compounds were found [peak 7 (5- hydroxymethylfurfural), peak 17 (neohesperidin), and peak 15 (naringin)]. The 7 components were linearly good in the respective concentration ranges (R2≥0.999 4); RSDs of precision, stability and repeatability tests were less than 2% (n=6); the average recovery rate of 98.95%-103.81%, RSD of 0.61%-2.75% (n=6); the contents of them were 0.031-0.106, 0.267-0.824, 0.089- 0.144, 1.344-2.091, 0.089-0.178, 1.328-2.028, 0.040-0.150 mg/g, respectively. CONCLUSIONS Established HPLC fingerprinting method coupled with multi-index content determination is validated to be accurate and reliable, and its combination with chemical pattern recognition analysis can be applied to the quality control of JPHWF.
3.TCM Treatment of Lung Cancer Based on AMPK Signaling Pathway: A Review
Chengzhi WANG ; Yifan LIU ; Zhenyao YANG ; Wenjun LI ; Xiaoqing ZHANG ; Dongdong LI ; Peimin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):291-298
As a common malignant tumor of the respiratory system, the incidence and mortality of lung cancer are still rising year by year. Its pathogenesis is complex, the prognosis is poor, and it seriously affects human physical and mental health. Although existing Western medical treatments can inhibit tumor growth to a certain extent and relieve patients' painful symptoms, problems such as postoperative recurrence and metastasis, numerous adverse reactions, and the tendency to develop drug resistance make the overall therapeutic effect unsatisfactory. Therefore, it is urgent to seek more efficient and safer treatments. Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway can regulate the growth, differentiation, apoptosis, and autophagy of lung cancer cells, and is extensively involved in the occurrence and development of lung cancer, thus being regarded as an important target for anti-lung cancer therapy. Traditional Chinese medicine (TCM) exerts anti-lung cancer effects through multiple pathways, mechanisms, and targets, with advantages such as preventing postoperative recurrence and metastasis, alleviating the adverse reactions of radiotherapy and chemotherapy, and improving quality of life. TCM has therefore become a key approach in current anti-lung cancer treatment. Studies have found that active components of Chinese medicine, including flavonoids, saponins, polyphenols, and terpenes, as well as Chinese medicine compound prescriptions such as Guiqi Yiyuan extract, Qingzao Jiufei decoction, and Yiqi Fuzheng formula, have significant regulatory effects on AMPK and its interacting signaling pathways. These effects include inducing autophagy and apoptosis of lung cancer cells, modulating macrophage polarization, inhibiting epithelial-mesenchymal transition, reversing drug resistance, and blocking the cell cycle, thereby exerting anti-lung cancer activity. This article reviews and summarizes recent studies on the anti-lung cancer effects of TCM, and discusses the mechanisms by which TCM regulates the AMPK signaling pathway in the treatment of lung cancer, with the aim of providing ideas and references for the development of new clinical anti-lung cancer drugs.
4.TCM Treatment of Lung Cancer Based on AMPK Signaling Pathway: A Review
Chengzhi WANG ; Yifan LIU ; Zhenyao YANG ; Wenjun LI ; Xiaoqing ZHANG ; Dongdong LI ; Peimin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):291-298
As a common malignant tumor of the respiratory system, the incidence and mortality of lung cancer are still rising year by year. Its pathogenesis is complex, the prognosis is poor, and it seriously affects human physical and mental health. Although existing Western medical treatments can inhibit tumor growth to a certain extent and relieve patients' painful symptoms, problems such as postoperative recurrence and metastasis, numerous adverse reactions, and the tendency to develop drug resistance make the overall therapeutic effect unsatisfactory. Therefore, it is urgent to seek more efficient and safer treatments. Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway can regulate the growth, differentiation, apoptosis, and autophagy of lung cancer cells, and is extensively involved in the occurrence and development of lung cancer, thus being regarded as an important target for anti-lung cancer therapy. Traditional Chinese medicine (TCM) exerts anti-lung cancer effects through multiple pathways, mechanisms, and targets, with advantages such as preventing postoperative recurrence and metastasis, alleviating the adverse reactions of radiotherapy and chemotherapy, and improving quality of life. TCM has therefore become a key approach in current anti-lung cancer treatment. Studies have found that active components of Chinese medicine, including flavonoids, saponins, polyphenols, and terpenes, as well as Chinese medicine compound prescriptions such as Guiqi Yiyuan extract, Qingzao Jiufei decoction, and Yiqi Fuzheng formula, have significant regulatory effects on AMPK and its interacting signaling pathways. These effects include inducing autophagy and apoptosis of lung cancer cells, modulating macrophage polarization, inhibiting epithelial-mesenchymal transition, reversing drug resistance, and blocking the cell cycle, thereby exerting anti-lung cancer activity. This article reviews and summarizes recent studies on the anti-lung cancer effects of TCM, and discusses the mechanisms by which TCM regulates the AMPK signaling pathway in the treatment of lung cancer, with the aim of providing ideas and references for the development of new clinical anti-lung cancer drugs.
5.Regulation of Gastrointestinal Tumor Stem Cells by Traditional Chinese Medicine: A Review
Chenglei ZHENG ; Chengzhi WANG ; Zhenyao YANG ; Mingyang HE ; Wenjun LI ; Dongdong LI ; Peimin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):280-287
Gastrointestinal tumors (GTs), including colorectal cancer, gastric cancer, liver cancer, pancreatic cancer, and esophageal cancer, are increasing in incidence worldwide and have become one of the major diseases threatening human health. Tumor stem cells (TSCs), an undifferentiated subpopulation within tumor tissues, possess biological characteristics such as self-renewal, multidirectional differentiation, high tumorigenicity, and resistance to radiochemotherapy. They play an important role in the occurrence, progression, recurrence, and metastasis of GTs and have increasingly become a research hotspot in GT treatment. Although modern medicine has made remarkable progress, there remain many problems in therapeutic approaches targeting TSCs. In this context, traditional Chinese medicine (TCM), with its favorable safety profile and multi-target mechanisms, has shown potential advantages and value in regulating TSCs. It can reduce TSC drug resistance, enhance the sensitivity of tumor cells to chemotherapeutic agents, inhibit tumor growth and metastasis, and has shown unique advantages in improving the quality of life and prolonging the survival of GT patients. Studies have found that active components of Chinese medicine, such as terpenoids, polyphenols, flavonoids, glycosides, and quinones, and Chinese medicine compound formulas, including Zuojin pills, Sijunzi decoction, Biejiajian pills, and Xuanfu Daizhe decoction, can inhibit TSCs-related signaling pathways such as the Notch signaling pathway, the Wnt/β-catenin signaling pathway, the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, and the Hippo signaling pathway. They also reduce the expression of TSC surface markers, including sex-determining region Y-box 2 (SOX2), sex-determining region Y-box 9 (SOX9), octamer-binding transcription factor 4 (OCT4), prominin-1 (CD133), cluster of differentiation 44 (CD44), cluster of differentiation 24 (CD24), and thyroid transmembrane protein 1 (CD90), thereby hindering TSC differentiation, accelerating their metabolic processes, improving the tumor microenvironment, and consequently inhibiting GT growth. This study collects and analyzes recent research on the regulation of TSCs by TCM in the treatment of GT, aiming to provide a new theoretical basis for tumor therapy with TCM, expand its application in the comprehensive treatment of GT, and offer new therapeutic ideas and methods for clinical practice.
6.Application of the comprehensive index method in occupational health risk assessment on chemical hazards in a metal product enterprise
Dongdong CAO ; Zihuan WANG ; Xiaoyu HU ; Lei ZHONG ; Lixia LIU ; Jia FU ; Li HU ; Liu LIU ; Yan YE
China Occupational Medicine 2024;51(5):533-538
Objective To evaluate the applicability of the comprehensive index method for assessing occupational health risks on chemical hazards in key work sites of a metal product enterprise. Methods A metal product enterprise in Beijing City was chosen as the research subject using the convenience sampling method. Occupational health investigations and chemical hazard monitoring were conducted at four work sites: grinding machine operation, welding, cutting, and painting. The comprehensive index method was used to determine the risk levels of chemical hazards. Results The grinding dust in the grinding machine operation work site was assessed as moderate risk. The nitrogen oxides and ozone in the welding (southeast) work sites were assessed as moderate risk. The nitrogen oxides ozone and welding fumes in the welding (northwest) and cutting work site were assessed as moderate risk. Benzene in the painting work site was assessed as moderate risk. All chemical hazards in other work sites were determined to pose low risks. Co-exposures to nitrogen oxides and ozone in the two welding work sites and cutting work site were classified as moderate risk. Co-exposure to ethylbenzene, xylene, methanol, ethyl acetate, and butyl acetate in the painting work site also posed moderate risk, while the co-exposure to toluene and methanol in the painting work site was assessed as low risk. Conclusion The comprehensive index method could be used for the occupational health risk assessment in the metal product enterprise. The enterprise should strengthen hazard control measures for exposure to grinding dust, welding fumes, nitrogen oxides, ozone, and benzene, and closely monitor the health risks associated with co-exposures of chemical hazards.
7.Factors influencing phytohemagglutinin response in gamma-interferon release assay
Jing CHEN ; Keping AO ; Xinying CHEN ; Fei YE ; Dongdong LI ; Zhonghao WANG ; Yi XIE
Chinese Journal of Microbiology and Immunology 2024;44(3):259-264
Objective:To investigate the factors influencing phytohemagglutinin (PHA) response in the detection of Mycobacterium tuberculosis infection by gamma interferon release assay (IGRA). Methods:A retrospective case-control study was conducted on 360 hospitalized patients who received IGRA in West China Hospital of Sichuan University from January 2019 to December 2021. According to PHA response (IFN-γ level), they were divided into three groups: negative mitogen response group (IFN-γ<2 pg/ml), weak positive mitogen response group (IFN-γ: 2-100 pg/ml), and normal mitogen response group (IFN-γ>400 pg/ml).Results:Immune diseases were independently associated with negative (OR=0.34, 95%CI: 0.17-0.72, P=0.004) and weak positive mitogen responses (OR=0.29, 95%CI: 0.16-0.55, P<0.001). Infections caused by pathogens other than Mycobacterium tuberculosis was independently associated with negative mitogen response (OR=0.266, 95%CI: 0.09-0.83, P=0.023), while immunodeficiency was independently associated with weak positive mitogen response (OR=0.280, 95%CI: 0.12-0.63, P=0.002). Mitogen response was significantly correlated with the levels of albumin and hemoglobin in serum and the counts of neutrophils and lymphocytes ( P<0.001). Conclusions:Immune diseases and immunodeficiency can affect mitogen response. Therefore, clinicians should give attention to mitogen response in the interpretation of IGRA test results to prevent misdiagnosis and underdiagnosis. Besides, to a certain extent, mitogen response can reflect the infection status of hospitalized patients.
8.Evaluation of Simulated Weightlessness Model of Hindlimb Unloading Miniature Pigs and Their Tissue Damage
Yingxin TU ; Yilan JI ; Fei WANG ; Dongming YANG ; Dongdong WANG ; Zhixin SUN ; Yuexin DAI ; Yanji WANG ; KAN GUANGHAN ; Bin WU ; Deming ZHAO ; Lifeng YANG
Laboratory Animal and Comparative Medicine 2024;44(5):475-486
Objective To establish a weightlessness simulation animal model using miniature pigs, leveraging the characteristic of multiple systems’ tissue structures and functions similar to those of humans, and to observe pathophysiological changes, providing a new method for aerospace research. Methods Nine standard-grade miniature pigs were selected and randomly divided into an experimental group (n=7) and a control group (n=2). The experimental group was fixed using customized metal cages, with canvas slings suspending their hind limbs off the ground, and the body positioned at a -20° angle relative to the ground to simulate unloading for 30 days (24 hours a day). Data on body weight, blood volume, and blood biochemistry indicators were collected at different time points for statistical analysis of basic physiological changes. After the experiment, the miniature pigs were euthanized and tissue samples were collected for histopathological observation of the cardiovascular, skeletal and muscle systems HE and Masson staining. Statistical analysis was also conducted on the thickness of arterial vessels and the diameter of skeletal muscle fibers. Additionally, western blotting was employed to detect the expression levels of skeletal muscle atrophy-related proteins, including muscle-specific RING finger protein 1 (MuRf-1) and muscle atrophy F-box (MAFbx, as known as Atrogin-1), while immunohistochemistry was used to detect the expression of glial fibrillary acidic protein (GFAP), an indicator of astrocyte activation in the brain, reflecting the pathophysiological functional changes across systems. Results After hindlimb unloading, the experimental group showed significant decreases in body weight (P<0.001) and blood volume (P<0.01). During the experiment, hemoglobin, hematocrit, and red blood cell count levels significantly decreased (P<0.05) but gradually recovered. The expression levels of alanine aminotransferase and γ-glutamyltransferase initially decreased (P<0.05) before rebounding, while albumin significantly decreased (P<0.001) and globulin significantly increased (P<0.01). Creatinine significantly decreased (P<0.05). The average diameter of gastrocnemius muscle fibers in the experimental group significantly shortened (P<0.05), with a leftward shift in the distribution of muscle fiber diameters and an increase in small-diameter muscle fibers. Simultaneously, Atrogin-1 expression in the gastrocnemius and paravertebral muscles significantly increased (P<0.05). These changes are generally consistent with the effects of weightlessness on humans and animals in space. Furthermore, degenerative changes were observed in some neurons of the cortical parietal lobe, frontal lobe, and hippocampal regions of the experimental group, with a slight reduction in the number of Purkinje cells in the cerebellar region, and a significant enhancement of GFAP-positive signals in the hippocampal area (P<0.05). Conclusion Miniature pigs subjected to a -20° angle hind limb unloading for 30 days maybe serve as a new animal model for simulating weightlessness, applicable to related aerospace research.
9.Preparation and characterization of a novel self-assembled polypeptide hydrogel sustainably releasing platelet-rich plasma growth factors
Fengying QI ; Lei WANG ; Dongdong LI ; Shaoduo YAN ; Kun LIU ; Yizhe ZHENG ; Zixin HE ; Xiaoyang YI ; Donggen WANG ; Qiuxia FU ; Jun LIANG
Chinese Journal of Tissue Engineering Research 2024;28(15):2364-2370
BACKGROUND:Due to the sudden release and the rapid removal by proteases,platelet-rich plasma hydrogel leads to shorter residence times of growth factors at the wound site.In recent years,researchers have focused on the use of hydrogels to encapsulate platelet-rich plasma in order to improve the deficiency of platelet-rich plasma hydrogels. OBJECTIVE:To prepare self-assembled polypeptide-platelet-rich plasma hydrogel and to explore its effects on the release of bioactive factors of platelet-rich plasma. METHODS:The self-assembled polypeptide was synthesized by the solid-phase synthesis method,and the solution was prepared by D-PBS.Hydrogels were prepared by mixing different volumes of polypeptide solutions with platelet-rich plasma and calcium chloride/thrombin solutions,so that the final mass fraction of polypeptides in the system was 0.1%,0.3%,and 0.5%,respectively.The hydrogel state was observed,and the release of growth factors in platelet-rich plasma was detected in vitro.The polypeptide self-assembly was stimulated by mixing 1%polypeptide solution with 1%human serum albumin solution,so that the final mass fraction of the polypeptide was 0.1%,0.3%,and 0.5%,respectively.The flow state of the liquid was observed,and the rheological mechanical properties of the self-assembled polypeptide were tested.The microstructure of polypeptide(mass fraction of 0.1%and 0.001%)-human serum albumin solution was observed by scanning electron microscope and transmission electron microscope. RESULTS AND CONCLUSION:(1)Hydrogels could be formed between different volumes of polypeptide solution and platelet-rich plasma.Compared with platelet-rich plasma hydrogels,0.1%and 0.3%polypeptide-platelet-rich plasma hydrogels could alleviate the sudden release of epidermal growth factor and vascular endothelial growth factor,and extend the release time to 48 hours.(2)After the addition of human serum albumin,the 0.1%polypeptide group still exhibited a flowing liquid,the 0.3%polypeptide group was semi-liquid,and the 0.5%polypeptide group stimulated self-assembly to form hydrogel.It was determined that human serum albumin in platelet-rich plasma could stimulate the self-assembly of polypeptides.With the increase of the mass fraction of the polypeptide,the higher the storage modulus of the self-assembled polypeptide,the easier it was to form glue.(3)Transmission electron microscopy exhibited that the polypeptide nanofibers were short and disordered before the addition of human serum albumin.After the addition of human serum albumin,the polypeptide nanofibers became significantly longer and cross-linked into bundles,forming a dense fiber network structure.Under a scanning electron microscope,the polypeptides displayed a disordered lamellar structure before adding human serum albumin.After the addition of human serum albumin,the polypeptides self-assembled into cross-linked and densely arranged porous structures.(4)In conclusion,the novel polypeptide can self-assemble triggered by platelet-rich plasma and the self-assembly effect can be accurately adjusted according to the ratio of human serum albumin to polypeptide.This polypeptide has a sustained release effect on the growth factors of platelet-rich plasma,which can be used as a new biomaterial for tissue repair.
10.Role of AQP4 in dexmedetomidine-induced reduction of blood-brain barrier permeability in mechanically ventilated mice: relationship with PKC
Min QU ; Wenbo SUN ; Xiuqing ZHANG ; Wang LIU ; Lei CHEN ; Zilong QI ; Dongdong HUANG
Chinese Journal of Anesthesiology 2024;44(3):318-323
Objective:To evaluate the role of aquaporin 4 (AQP4) in dexmedetomidine-induced reduction of blood-brain barrier permeability in mechanically ventilated mice and the relationship with protein kinase C (PKC).Methods:One hundred and fifty clean-grade healthy male C57BL6 mice, weighing 20-25 g, aged 8-12 weeks, were divided into 5 groups ( n=30 each) using a random number table method: control group (group C), mechanical ventilation group (group V), LY317615 group (group L), dexmedetomidine group (group D), and dexmedetomidine+ PMA group (group DP). Group C spontaneously breathed air for 6 h. The animals were mechanically ventilated for 6 h in group V. PKC inhibitor LY3176 15 μg/kg was intraperitoneally injected at 30 min before mechanical ventilation in group L. Dexmedetomidine 50 μg/kg was intraperitoneally injected at 30 min before mechanical ventilation in D and DP groups. PKC activator PMA 15 μg/kg was intraperitoneally injected at 60 min before mechanical ventilation in group DP. Mice were anesthetized at 1 day after mechanical ventilation, then sacrificed and hippocampal tissues were taken for microscopic examination of pathological changes in the hippocampal CA1 and CA3 areas (with a light microscope). Brain tissues were also taken to measure the water content and content of Evans blue (EB) and to detect the expression of PKC and AQP4 (by Western blot). The cognitive function was evaluated using a novel object recognition task at 3 days after mechanical ventilation. Results:Compared with group C, the water content and EB content of brain tissues were significantly increased after mechanical ventilation, the expression of PKC and AQP4 in brain tissues was up-regulated, the percentage of novel object exploration and discrimination index were decreased ( P<0.05), and the histopathological damage in the hippocampal CA1 and CA3 areas was aggravated in group V and group DP. Compared with group V, the water content and EB content of brain tissues were significantly decreased after mechanical ventilation, the expression of PKC and AQP4 in brain tissues was down-regulated, the percentage of novel object exploration and discrimination index were increased ( P<0.05), and the histopathological damage in the hippocampal CA1 and CA3 areas was significantly attenuated in group D and group L. Compared with group D, the water content and EB content of brain tissues were significantly increased after mechanical ventilation, the expression of PKC and AQP4 in brain tissues was up-regulated, the percentage of novel object exploration and discrimination index were decreased ( P<0.05), and the histopathological damage in the hippocampal CA1 and CA3 areas was aggravated in group DP. Conclusions:AQP4 is involved in dexmedetomidine-induced reduction of blood-brain barrier permeability in mechanically ventilated mice, and the mechanism is related to inhibiting activation of PKC.

Result Analysis
Print
Save
E-mail