1.Liver histopathological features of HBeAg-negative patients in the indeterminate phase of low-viral-load chronic hepatitis B virus infection
Lulu ZHOU ; Bing DONG ; Jiejing XIN ; Guanghua XU ; Na LIU
Journal of Clinical Hepatology 2025;41(1):52-56
ObjectiveTo investigate the liver histopathological features of HBeAg-negative patients in the indeterminate phase of low-viral-load chronic hepatitis B virus (HBV) infection. MethodsA total of 271 patients with low-viral-load HBeAg-negative chronic HBV infection who underwent liver biopsy in Department of Infectious Diseases, Affiliated Hospital of Yan’an University, from September 2013 to June 2021 were enrolled as subjects, and the degree of liver injury was compared between patients based on age, sex, presence or absence of the family history of hepatitis B, HBsAg, and alanine aminotransferase (ALT) level. The chi-square test was used for comparison of categorical data between two groups. ResultsAmong the 271 patients with HBeAg-negative chronic HBV infection, 86 patients (31.73%) grade≥A2 liver inflammatory activity, 72 (26.57%) had a liver fibrosis stage of ive, and 112 (41.33%) had moderate or severe liver histological injury. The proportion of patients with grade≥A2 liver inflammatory activity in the patients with ALT>20 U/L was significantly higher than that in the patients with ALT≤20 U/L (χ2=3.938, P=0.047). There were no significant differences in the proportion of patients with grade≥A2 liver inflammatory activity between the patients with different ages, sexes, family history of hepatitis B, HBsAg levels (all P>0.05),there were no significant differences in the proportion of patients with a liver fibrosis stage of ≥F2 between the patients with different ages, sexes, family history of hepatitis B, HBsAg, and ALT levels (all P>0.05), and the stratified analysis of patients aged≤30 years and patients without the family history of hepatitis B showed no statistical significance between groups (all P>0.05). There was no significant difference in the degree of liver histological injury between the patients with different ages, sexes, family history of hepatitis B, HBsAg, and ALT levels (all P>0.05). ConclusionSignificant liver injury is observed in more than 40% of the patients with low-viral-load HBeAg-negative chronic HBV infection, and there is no significant difference in the degree of liver histological injury between the patients with different ages, sexes, family history of hepatitis B, HBsAg, and ALT levels. Even for the patients aged≤30 years who deny the family history of hepatitis B, there is still a considerable proportion of patients with liver injury, which should be taken seriously by clinicians.
2.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
3.Structure, content and data standardization of rehabilitation medical records
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Shiyong WU ; Yaoguang ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Jian YANG ; Na AN ; Yuanjun DONG ; Xiaojia XIN ; Xiangxia REN ; Ye LIU ; Yifan TIAN
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):21-32
ObjectiveTo elucidate the critical role of rehabilitation medical records (including electronic records) in rehabilitation medicine's clinical practice and management, comprehensively analyzed the structure, core content and data standards of rehabilitation medical records, to develop a standardized medical record data architecture and core dataset suitable for rehabilitation medicine and to explore the application of rehabilitation data in performance evaluation and payment. MethodsBased on the regulatory documents Basic Specifications for Medical Record Writing and Basic Specifications for Electronic Medical Records (Trial) issued by National Health Commission of China, and referencing the World Health Organization (WHO) Family of International Classifications (WHO-FICs) classifications, International Classification of Diseases (ICD-10/ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), this study constructed the data architecture, core content and data standards for rehabilitation medical records. Furthermore, it explored the application of rehabilitation record summary sheets (home page) data in rehabilitation medical statistics and payment methods, including Diagnosis-related Groups (DRG), Diagnosis-Intervention Packet (DIP) and Case Mix Index. ResultsThis study proposed a systematic standard framework for rehabilitation medical records, covering key components such as patient demographics, rehabilitation diagnosis, functional assessment, rehabilitation treatment prescriptions, progress evaluations and discharge summaries. The research analyzed the systematic application methods and data standards of ICD-10/ICD-11, ICF and ICHI Beta-3 in the fields of medical record terminology, coding and assessment. Constructing a standardized data structure and data standards for rehabilitation medical records can significantly improve the quality of data reporting based on the medical record summary sheet, thereby enhancing the quality control of rehabilitation services, effectively supporting the optimization of rehabilitation medical insurance payment mechanisms, and contributing to the establishment of rehabilitation medical performance evaluation and payment based on DRG and DIP. ConclusionStructured rehabilitation records and data standardization are crucial tools for quality control in rehabilitation. Systematically applying the three reference classifications of the WHO-FICs, and aligning with national medical record and electronic health record specifications, facilitate the development of a standardized rehabilitation record architecture and core dataset. Standardizing rehabilitation care pathways based on the ICF methodology, and developing ICF- and ICD-11-based rehabilitation assessment tools, auxiliary diagnostic and therapeutic systems, and supporting terminology and coding systems, can effectively enhance the quality of rehabilitation records and enable interoperability and sharing of rehabilitation data with other medical data, ultimately improving the quality and safety of rehabilitation services.
4.Does Vertebral Cement Augmentation Reduce Postoperative Proximal Junction Complications in Spinal Deformity Corrective Surgery: A Systematic Review and Meta-analysis
Dong LI ; Xin SUN ; Jie LI ; Yanjie XU ; Yong QIU ; Zezhang ZHU ; Zhen LIU
Neurospine 2025;22(1):51-66
Objective:
To assess the effectiveness of vertebral cement augmentation (VCA) at upper instrumented vertebra (UIV) and UIV+1 in preventing proximal junction complications in correction surgery for adult spinal deformity patients.
Methods:
A literature search was conducted on Web of Science, PubMed, and Cochrane Library databases for comparative studies published before December 30th, 2024. Two reviewers independently screened eligible articles based on the inclusion and exclusion criteria, assessed study quality with Newcastle-Ottawa scale, and extracted data like study characteristics, surgical details, primary and secondary outcomes. Data analysis was performed using Review Manager 5.4 and Stata software.
Results:
Of all 513 papers screened, a meta-analysis was conducted on 7 articles, which included 333 cases in the VCA group and 827 cases in the control group. Patients in the VCA group had significantly older age and lower T score than patients in the control group. Although there was no statistically significant difference in the incidence of proximal junctional failure between the 2 groups, the results of the meta-analysis showed that the incidence of proximal junctional failure and the need for revision surgery were reduced by 36% and 71%, respectively, in the VCA group. One study reported 2 clinically silent pulmonary cement embolism and 1 patient requiring surgical decompression for cement leak into the spinal canal.
Conclusion
This meta-analysis supported the use of VCA in corrective surgery for spinal deformities patients, especially in patients with advanced age and osteoporosis.
5.Does Vertebral Cement Augmentation Reduce Postoperative Proximal Junction Complications in Spinal Deformity Corrective Surgery: A Systematic Review and Meta-analysis
Dong LI ; Xin SUN ; Jie LI ; Yanjie XU ; Yong QIU ; Zezhang ZHU ; Zhen LIU
Neurospine 2025;22(1):51-66
Objective:
To assess the effectiveness of vertebral cement augmentation (VCA) at upper instrumented vertebra (UIV) and UIV+1 in preventing proximal junction complications in correction surgery for adult spinal deformity patients.
Methods:
A literature search was conducted on Web of Science, PubMed, and Cochrane Library databases for comparative studies published before December 30th, 2024. Two reviewers independently screened eligible articles based on the inclusion and exclusion criteria, assessed study quality with Newcastle-Ottawa scale, and extracted data like study characteristics, surgical details, primary and secondary outcomes. Data analysis was performed using Review Manager 5.4 and Stata software.
Results:
Of all 513 papers screened, a meta-analysis was conducted on 7 articles, which included 333 cases in the VCA group and 827 cases in the control group. Patients in the VCA group had significantly older age and lower T score than patients in the control group. Although there was no statistically significant difference in the incidence of proximal junctional failure between the 2 groups, the results of the meta-analysis showed that the incidence of proximal junctional failure and the need for revision surgery were reduced by 36% and 71%, respectively, in the VCA group. One study reported 2 clinically silent pulmonary cement embolism and 1 patient requiring surgical decompression for cement leak into the spinal canal.
Conclusion
This meta-analysis supported the use of VCA in corrective surgery for spinal deformities patients, especially in patients with advanced age and osteoporosis.
6.Does Vertebral Cement Augmentation Reduce Postoperative Proximal Junction Complications in Spinal Deformity Corrective Surgery: A Systematic Review and Meta-analysis
Dong LI ; Xin SUN ; Jie LI ; Yanjie XU ; Yong QIU ; Zezhang ZHU ; Zhen LIU
Neurospine 2025;22(1):51-66
Objective:
To assess the effectiveness of vertebral cement augmentation (VCA) at upper instrumented vertebra (UIV) and UIV+1 in preventing proximal junction complications in correction surgery for adult spinal deformity patients.
Methods:
A literature search was conducted on Web of Science, PubMed, and Cochrane Library databases for comparative studies published before December 30th, 2024. Two reviewers independently screened eligible articles based on the inclusion and exclusion criteria, assessed study quality with Newcastle-Ottawa scale, and extracted data like study characteristics, surgical details, primary and secondary outcomes. Data analysis was performed using Review Manager 5.4 and Stata software.
Results:
Of all 513 papers screened, a meta-analysis was conducted on 7 articles, which included 333 cases in the VCA group and 827 cases in the control group. Patients in the VCA group had significantly older age and lower T score than patients in the control group. Although there was no statistically significant difference in the incidence of proximal junctional failure between the 2 groups, the results of the meta-analysis showed that the incidence of proximal junctional failure and the need for revision surgery were reduced by 36% and 71%, respectively, in the VCA group. One study reported 2 clinically silent pulmonary cement embolism and 1 patient requiring surgical decompression for cement leak into the spinal canal.
Conclusion
This meta-analysis supported the use of VCA in corrective surgery for spinal deformities patients, especially in patients with advanced age and osteoporosis.
7.Does Vertebral Cement Augmentation Reduce Postoperative Proximal Junction Complications in Spinal Deformity Corrective Surgery: A Systematic Review and Meta-analysis
Dong LI ; Xin SUN ; Jie LI ; Yanjie XU ; Yong QIU ; Zezhang ZHU ; Zhen LIU
Neurospine 2025;22(1):51-66
Objective:
To assess the effectiveness of vertebral cement augmentation (VCA) at upper instrumented vertebra (UIV) and UIV+1 in preventing proximal junction complications in correction surgery for adult spinal deformity patients.
Methods:
A literature search was conducted on Web of Science, PubMed, and Cochrane Library databases for comparative studies published before December 30th, 2024. Two reviewers independently screened eligible articles based on the inclusion and exclusion criteria, assessed study quality with Newcastle-Ottawa scale, and extracted data like study characteristics, surgical details, primary and secondary outcomes. Data analysis was performed using Review Manager 5.4 and Stata software.
Results:
Of all 513 papers screened, a meta-analysis was conducted on 7 articles, which included 333 cases in the VCA group and 827 cases in the control group. Patients in the VCA group had significantly older age and lower T score than patients in the control group. Although there was no statistically significant difference in the incidence of proximal junctional failure between the 2 groups, the results of the meta-analysis showed that the incidence of proximal junctional failure and the need for revision surgery were reduced by 36% and 71%, respectively, in the VCA group. One study reported 2 clinically silent pulmonary cement embolism and 1 patient requiring surgical decompression for cement leak into the spinal canal.
Conclusion
This meta-analysis supported the use of VCA in corrective surgery for spinal deformities patients, especially in patients with advanced age and osteoporosis.
8.Does Vertebral Cement Augmentation Reduce Postoperative Proximal Junction Complications in Spinal Deformity Corrective Surgery: A Systematic Review and Meta-analysis
Dong LI ; Xin SUN ; Jie LI ; Yanjie XU ; Yong QIU ; Zezhang ZHU ; Zhen LIU
Neurospine 2025;22(1):51-66
Objective:
To assess the effectiveness of vertebral cement augmentation (VCA) at upper instrumented vertebra (UIV) and UIV+1 in preventing proximal junction complications in correction surgery for adult spinal deformity patients.
Methods:
A literature search was conducted on Web of Science, PubMed, and Cochrane Library databases for comparative studies published before December 30th, 2024. Two reviewers independently screened eligible articles based on the inclusion and exclusion criteria, assessed study quality with Newcastle-Ottawa scale, and extracted data like study characteristics, surgical details, primary and secondary outcomes. Data analysis was performed using Review Manager 5.4 and Stata software.
Results:
Of all 513 papers screened, a meta-analysis was conducted on 7 articles, which included 333 cases in the VCA group and 827 cases in the control group. Patients in the VCA group had significantly older age and lower T score than patients in the control group. Although there was no statistically significant difference in the incidence of proximal junctional failure between the 2 groups, the results of the meta-analysis showed that the incidence of proximal junctional failure and the need for revision surgery were reduced by 36% and 71%, respectively, in the VCA group. One study reported 2 clinically silent pulmonary cement embolism and 1 patient requiring surgical decompression for cement leak into the spinal canal.
Conclusion
This meta-analysis supported the use of VCA in corrective surgery for spinal deformities patients, especially in patients with advanced age and osteoporosis.
9.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
10.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.

Result Analysis
Print
Save
E-mail