1.Alzheimer's disease diagnosis among dementia patients via blood biomarker measurement based on the AT(N) system.
Tianyi WANG ; Li SHANG ; Chenhui MAO ; Longze SHA ; Liling DONG ; Caiyan LIU ; Dan LEI ; Jie LI ; Jie WANG ; Xinying HUANG ; Shanshan CHU ; Wei JIN ; Zhaohui ZHU ; Huimin SUI ; Bo HOU ; Feng FENG ; Bin PENG ; Liying CUI ; Jianyong WANG ; Qi XU ; Jing GAO
Chinese Medical Journal 2025;138(12):1505-1507
2.PPAR δ-87T/C plays a critical role in the development of colorectal cancer.
Bo DONG ; Lie YANG ; Bin YANG ; Bin ZHOU ; Ben NIU ; Taiqi WANG ; Zhaowan XU ; Lin ZHU ; Guang HU ; Wenjian MENG ; Hong ZHANG ; Zongguang ZHOU ; Xiaofeng SUN
Chinese Medical Journal 2025;138(23):3209-3211
3.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
4.Exploring the causal relationship between leukocyte telomere length and prostatitis, orchitis, and epididymitis based on a two-sample Mendelian randomization.
Dan-Yang LI ; Shun YU ; Bo-Hui YANG ; Jun-Bao ZHANG ; Guo-Chen YIN ; Lin-Na WU ; Qin-Zuo DONG ; Jin-Long XU ; Shu-Ping NING ; Rong ZHAO
National Journal of Andrology 2025;31(4):306-312
OBJECTIVE:
To investigate the genetic causal relationship of leukocyte telomere length (LTL) with prostatitis, orchitis and epididymitis by two-sample Mendelian randomization (MR).
METHODS:
Using LTL as the exposure factor and prostatitis, orchitis and epididymitis as outcome factors, we mined the Database of Genome-Wide Association Studies (GWAS). Then, we analyzed the causal relationship of LTL with prostatitis, orchitis and epididymitis by Mendelian randomization using inverse variance weighting (IVW) as the main method and weighted median and MR-Egger regression as auxiliary methods, determined the horizontal multiplicity by MR-Egger intercept test, and conducted sensitivity analysis using the leaving-one-out method.
RESULTS:
A total of 121 related single nucleotide polymorphisms (SNPs) were identified in this study. IVW showed LTL to be a risk factor for prostatitis (OR = 1.383, 95% CI: 1.044-1.832, P = 0.024), and for orchitis and epididymitis as well (OR = 1.770, 95% CI: 1.275-2.456, P = 0.000 6).
CONCLUSION
Genetic evidence from Mendelian randomized analysis indicates that shortening of LTL reduces the risk of prostatitis, orchitis and epididymitis.
Humans
;
Male
;
Mendelian Randomization Analysis
;
Epididymitis/genetics*
;
Prostatitis/genetics*
;
Polymorphism, Single Nucleotide
;
Leukocytes
;
Orchitis/genetics*
;
Genome-Wide Association Study
;
Telomere
;
Risk Factors
5.A novel feedback loop: CELF1/circ-CELF1/BRPF3/KAT7 in cardiac fibrosis.
Yuan JIANG ; Bowen ZHANG ; Bo ZHANG ; Xinhua SONG ; Xiangyu WANG ; Wei ZENG ; Liyang ZUO ; Xinqi LIU ; Zheng DONG ; Wenzheng CHENG ; Yang QIAO ; Saidi JIN ; Dongni JI ; Xiaofei GUO ; Rong ZHANG ; Xieyang GONG ; Lihua SUN ; Lina XUAN ; Berezhnova Tatjana ALEXANDROVNA ; Xiaoxiang GUAN ; Mingyu ZHANG ; Baofeng YANG ; Chaoqian XU
Acta Pharmaceutica Sinica B 2025;15(10):5192-5211
Cardiac fibrosis is characterized by an elevated amount of extracellular matrix (ECM) within the heart. However, the persistence of cardiac fibrosis ultimately diminishes contractility and precipitates cardiac dysfunction. Circular RNAs (circRNAs) are emerging as important regulators of cardiac fibrosis. Here, we elucidate the functional role of a specific circular RNA CELF1 in cardiac fibrosis and delineate a novel feedback loop mechanism. Functionally, circ-CELF1 was involved in enhancing fibrosis-related markers' expression and promoting the proliferation of cardiac fibroblasts (CFs), thereby exacerbating cardiac fibrosis. Mechanistically, circ-CELF1 reduced the ubiquitination-degradation rate of BRPF3, leading to an elevation of BRPF3 protein levels. Additionally, BRPF3 acted as a modular scaffold for the recruitment of histone acetyltransferase KAT7 to facilitate the induction of H3K14 acetylation within the promoters of the Celf1 gene. Thus, the transcription of Celf1 was dramatically activated, thereby inhibiting the subsequent response of their downstream target gene Smad7 expression to promote cardiac fibrosis. Moreover, Celf1 further promoted Celf1 pre-mRNA transcription and back-splicing, thereby establishing a feedback loop for circ-CELF1 production. Consequently, a novel feedback loop involving CELF1/circ-CELF1/BRPF3/KAT7 was established, suggesting that circ-CELF1 may serve as a potential novel therapeutic target for cardiac fibrosis.
6.Chromatin landscape alteration uncovers multiple transcriptional circuits during memory CD8+ T-cell differentiation.
Qiao LIU ; Wei DONG ; Rong LIU ; Luming XU ; Ling RAN ; Ziying XIE ; Shun LEI ; Xingxing SU ; Zhengliang YUE ; Dan XIONG ; Lisha WANG ; Shuqiong WEN ; Yan ZHANG ; Jianjun HU ; Chenxi QIN ; Yongchang CHEN ; Bo ZHU ; Xiangyu CHEN ; Xia WU ; Lifan XU ; Qizhao HUANG ; Yingjiao CAO ; Lilin YE ; Zhonghui TANG
Protein & Cell 2025;16(7):575-601
Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells. We reveal that under distinct epigenetic regulations, the early activated CD8+ T cells divergently originated for short-lived effector and memory precursor effector cells. We also uncover a defined epigenetic rewiring leading to the conversion from effector memory to central memory cells during memory formation. Additionally, we illustrate chromatin regulatory mechanisms underlying long-lasting versus transient transcription regulation during memory differentiation. Finally, we confirm the essential roles of Sox4 and Nrf2 in developing memory precursor effector and effector memory cells, respectively, and validate cell state-specific enhancers in regulating Il7r using CRISPR-Cas9. Our data pave the way for understanding the mechanism underlying epigenetic memory formation in CD8+ T-cell differentiation.
CD8-Positive T-Lymphocytes/metabolism*
;
Cell Differentiation
;
Chromatin/immunology*
;
Animals
;
Mice
;
Immunologic Memory
;
Epigenesis, Genetic
;
SOXC Transcription Factors/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Mice, Inbred C57BL
;
Gene Regulatory Networks
;
Enhancer Elements, Genetic
7.Multidisciplinary expert consensus on weight management for overweight and obese children and adolescents based on healthy lifestyle
HONG Ping, MA Yuguo, TAO Fangbiao, XU Yajun, ZHANG Qian, HU Liang, WEI Gaoxia, YANG Yuexin, QIAN Junwei, HOU Xiao, ZHANG Yimin, SUN Tingting, XI Bo, DONG Xiaosheng, MA Jun, SONG Yi, WANG Haijun, HE Gang, CHEN Runsen, LIU Jingmin, HUANG Zhijian, HU Guopeng, QIAN Jinghua, BAO Ke, LI Xuemei, ZHU Dan, FENG Junpeng, SHA Mo, Chinese Association for Student Nutrition & ; Health Promotion, Key Laboratory of Sports and Physical Fitness of the Ministry of Education,〖JZ〗 Engineering Research Center of Ministry of Education for Key Core Technical Integration System and Equipment,〖JZ〗 Key Laboratory of Exercise Rehabilitation Science of the Ministry of Education
Chinese Journal of School Health 2025;46(12):1673-1680
Abstract
In recent years, the prevalence of overweight and obesity among children and adolescents has risen rapidly, posing a serious threat to their physical and mental health. To provide scientific, systematic, and standardized weight management guidance for overweight and obese children and adolescents, the study focuses on the core concept of healthy lifestyle intervention, integrates multidisciplinary expert opinions and research findings,and proposes a comprehensive multidisciplinary intervention framework covering scientific exercise intervention, precise nutrition and diet, optimized sleep management, and standardized psychological support. It calls for the establishment of a multi agent collaborative management mechanism led by the government, implemented by families, fostered by schools, initiated by individuals, optimized by communities, reinforced by healthcare, and coordinated by multiple stakeholders. Emphasizing a child and adolescent centered approach, the consensus advocates for comprehensive, multi level, and personalized guidance strategies to promote the internalization and maintenance of a healthy lifestyle. It serves as a reference and provides recommendations for the effective prevention and control of overweight and obesity, and enhancing the health level of children and adolescents.
8.Effect of high-fat diet intake on pharmacokinetics of amoxicillin and clavulanate potassium tablet in healthy Chinese volunteers
Yu-Fang XU ; Hao-Jing SONG ; Bo QIU ; Yi-Ting HU ; Wan-Jun BAI ; Xue SUN ; Bin CAO ; Zhan-Jun DONG
The Chinese Journal of Clinical Pharmacology 2024;40(4):589-593
Objective To observe the pharmacokinetic effect of amoxicillin and clavulanate potassium tablets on amoxicillin in Chinese healthy subjects under fasting and high fat and high calorie diet.Methods 71 healthy subjects were given a single dose of amoxicillin potassium clavulanate tablets(0.375 g)on fasting or high fat diet,and venous blood samples were collected at different time points.The concentrations of amoxicillin in human plasma were determined by HPLC-MS/MS method,and the pharmacokinetic parameters were calculated by non-atrioventricular model using PhoenixWinNonlin 8.0 software.Results The main pharmacokinetic parameters of amoxicillin potassium clavulanate tablets after fasting and high fat diet were(5 105.00±1 444.00),(4 593.00±1 327.00)ng·mL-1,and postprandial-fasting ratio 89.40%,90%confidence interval(79.55%-100.19%);t1/2 were(1.52±0.16),(1.39±0.22)h;AUC0-t were(12 969.00±1 841.00),(11 577.00±1 663.00)ng·mL-1·h,and postdietary/fasting ratio 89.20%,90%confidence interval(83.92%-94.28%);AUC0-∞ were(13 024.00±1 846.00),(11 532.00±1 545.00)ng·mL-1·h,and postprandial-fasting ratio 88.60%,90%confidence interval(83.48%-93.50%).The median Tmax(range)were 1.63(0.75,3.00)and 2.50(0.75,6.00)h,respectively,and the Tmax of postprandial medication was delayed(P<0.01).Conclusion Compared with fasting condition,amoxicillin Tmax was significantly delayed after high fat diet,while Cmax,AUC0-t and AUC0-∞ were not significantly changed,indicating that food could delay the absorption of amoxicillin,but did not affect the degree of absorption.
9.Visual analysis of research hotspots and development trends of Polygoni Multiflori Radix(processed)based on CiteSpace
Fang TANG ; Li-Yuan QU ; Bo-Hong CEN ; Ping WANG ; Dong-Mei SUN ; Zhong-Yuan XU
The Chinese Journal of Clinical Pharmacology 2024;40(9):1363-1367
Objective This study aims to explore the research hotspots and trends of Polygoni Multiflori Radix(processed)and provide a reference for follow-up research by bibliometric visualization analysis.Methods Relevant Polygoni Multiflori Radix literatures were collected through databases such as PubMed,Web of Science and China National Knowledge Infrastructure.Use CiteSpace 6.1.R6 software to do bibliometric analysis on the number and years of articles,research fields,countries/regions,institutions,authors,keywords,co-citation references,and build visual maps.Results A total of 1 517 literatures(1 131 Chinese literatures and 386 English literatures)were searched through databases in this review.We therefore conducted a quantitative analysis of accessible literature published over the last 30 years found that a very modest upward trend in publication volume from Chinese and a notable increase in publication over the world.Among the author teams,there was some cooperation,and the author team with the most published papers cooperated more closely,such as XIAO Xiao-he and WANG Jia-bo's team.In particular reducing toxicity and increasing efficiency by processing,and the toxicity and the rationalusage of Polygoni Multiflori Radix were a main research direction for nearly ten years.Meanwhile,through the co-occurrence analysis of keywords,we constructed and visualized a keyword network to explore the hotspots and future directions of Polygoni Multiflori Radix.We clearly found that effective and toxic homologous components,molecular mechanisms and early warning surveillance of hepatotoxicity might be the next topics for Polygoni Multiflori Radix.Conclusion The research on the homologous chemical components of Polygoni Multiflori Radix(processed)has been very active.The research on the conversion relationship and mechanism of homologous components of Polygoni Multiflori Radix(processed)and the mechanism of hepatotoxicity will be the research focus and development trend in this field.
10.Protective effects of citicoline sodium on developmental convulsive cerebral injury in rats
Bo ZHANG ; Xiao-Dong ZHAO ; Cheng XU ; Lei SONG
The Chinese Journal of Clinical Pharmacology 2024;40(17):2528-2532
Objective To explore the protective effect and mechanism of citicoline sodium on developmental convulsive cerebral injury in rats.Method SD rats were randomly divided into control group,model group and experimental group with 10 in each group.The rat developmental convulsive model was established by intraperitoneal injection of lithium chloride,scopolamine hydrobromide and pilocarpine.After successful modeling,the rats in experimental group were intraperitoneally injected with cytidine sodium(500 mg·kg-1)once a day for one week.The control group and the model group were intraperitoneally injected with the same amount of 0.9%NaCl at the same time point.Griess detection of nitric oxide(NO)concentration in serum;enzyme-linked immunosorbent assay(ELISA)detection of interleukin-6(IL-6)and interleukin-1 β(IL-1β)content in cerebrum;biochemical detection detection of superoxide dismutase(SOD)activity and malondialdehyde(MDA)content in cerebrum;real-time quantitative polymerase chain reaction(qRT-PCR)detection of mRNA levels of inducible nitric oxide synthase(iNOS)in cerebrum;Western blot detection of protein levels of G protein-coupled receptors 39 antibody(GPR39),protein kinase B(AKT),and extracellular regulated protein kinases(ERK)in cerebrum.Results In control group,model group and experimental group,the level of IL-6 in rats cerebrum were(37.16±6.34),(119.31±19.26)and(74.52±12.37)pg·mL-1,respectively;the contents of IL-1 β were(7.46±1.25),(42.73±8.41)and(24.18±4.62)pg·mL-1,respectively;SOD activity were(384.51±34.72),(229.16±27.42)and(218.47±33.59)U·gp-1,respectively;MDA content were(1.06±0.15),(1.82±0.21)and(1.24±0.17)U·gp-1,respectively;serum NO levels were(13.62±2.06),(29.34±5.37)and(16.55±3.15)μmol·L-1,respectively;mRNA levels of iNOS were 1.00±0.15,2.19±0.24 and 1.62±0.18,respectively;protein levels of GPR39 were 0.41±0.05,1.03±0.19 and 0.74±0.08,respectively;p-AKT/AKT values were 0.46±0.07,0.13±0.04 and 0.36±0.05,respectively;p-ERK/ERK values were 0.37±0.11,0.11±0.03 and 0.42±0.05,respectively.The above indicators showed statistically significant differences between the control group and the model group(P<0.01,P<0.001);the difference between the model group and the experimental group was statistically significant(P<0.05,P<0.01,P<0.001).Conclusion Cytidine sodium can effectively alleviate the degree of developmental convulsive cerebral injury rats,inhibit inflammatory reactions,and improve oxidative stress.Its mechanism may be related to the activation of GPR39/AKT/ERK signaling pathway.


Result Analysis
Print
Save
E-mail