1.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
2.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.The neurophysiological mechanisms of exercise-induced improvements in cognitive function.
Jian-Xiu LIU ; Bai-Le WU ; Di-Zhi WANG ; Xing-Tian LI ; Yan-Wei YOU ; Lei-Zi MIN ; Xin-Dong MA
Acta Physiologica Sinica 2025;77(3):504-522
The neurophysiological mechanisms by which exercise improves cognitive function have not been fully elucidated. A comprehensive and systematic review of current domestic and international neurophysiological evidence on exercise improving cognitive function was conducted from multiple perspectives. At the molecular level, exercise promotes nerve cell regeneration and synaptogenesis and maintains cellular development and homeostasis through the modulation of a variety of neurotrophic factors, receptor activity, neuropeptides, and monoamine neurotransmitters, and by decreasing the levels of inflammatory factors and other modulators of neuroplasticity. At the cellular level, exercise enhances neural activation and control and improves brain structure through nerve regeneration, synaptogenesis, improved glial cell function and angiogenesis. At the structural level of the brain, exercise promotes cognitive function by affecting white and gray matter volumes, neural activation and brain region connectivity, as well as increasing cerebral blood flow. This review elucidates how exercise improves the internal environment at the molecular level, promotes cell regeneration and functional differentiation, and enhances the brain structure and neural efficiency. It provides a comprehensive, multi-dimensional explanation of the neurophysiological mechanisms through which exercise promotes cognitive function.
Animals
;
Humans
;
Brain/physiology*
;
Cognition/physiology*
;
Exercise/physiology*
;
Nerve Regeneration/physiology*
;
Neuronal Plasticity/physiology*
7.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
8.Development and application on a full process disease diagnosis and treatment assistance system based on generative artificial intelligence.
Wanjie YANG ; Hao FU ; Xiangfei MENG ; Changsong LI ; Ce YU ; Xinting ZHAO ; Weifeng LI ; Wei ZHAO ; Qi WU ; Zheng CHEN ; Chao CUI ; Song GAO ; Zhen WAN ; Jing HAN ; Weikang ZHAO ; Dong HAN ; Zhongzhuo JIANG ; Weirong XING ; Mou YANG ; Xuan MIAO ; Haibai SUN ; Zhiheng XING ; Junquan ZHANG ; Lixia SHI ; Li ZHANG
Chinese Critical Care Medicine 2025;37(5):477-483
The rapid development of artificial intelligence (AI), especially generative AI (GenAI), has already brought, and will continue to bring, revolutionary changes to our daily production and life, as well as create new opportunities and challenges for diagnostic and therapeutic practices in the medical field. Haihe Hospital of Tianjin University collaborates with the National Supercomputer Center in Tianjin, Tianjin University, and other institutions to carry out research in areas such as smart healthcare, smart services, and smart management. We have conducted research and development of a full-process disease diagnosis and treatment assistance system based on GenAI in the field of smart healthcare. The development of this project is of great significance. The first goal is to upgrade and transform the hospital's information center, organically integrate it with existing information systems, and provide the necessary computing power storage support for intelligent services within the hospital. We have implemented the localized deployment of three models: Tianhe "Tianyuan", WiNGPT, and DeepSeek. The second is to create a digital avatar of the chief physician/chief physician's voice and image by integrating multimodal intelligent interaction technology. With generative intelligence as the core, this solution provides patients with a visual medical interaction solution. The third is to achieve deep adaptation between generative intelligence and the entire process of patient medical treatment. In this project, we have developed assistant tools such as intelligent inquiry, intelligent diagnosis and recognition, intelligent treatment plan generation, and intelligent assisted medical record generation to improve the safety, quality, and efficiency of the diagnosis and treatment process. This study introduces the content of a full-process disease diagnosis and treatment assistance system, aiming to provide references and insights for the digital transformation of the healthcare industry.
Artificial Intelligence
;
Humans
;
Delivery of Health Care
;
Generative Artificial Intelligence
9.Laboratory Diagnosis and Molecular Epidemiological Characterization of the First Imported Case of Lassa Fever in China.
Yu Liang FENG ; Wei LI ; Ming Feng JIANG ; Hong Rong ZHONG ; Wei WU ; Lyu Bo TIAN ; Guo CHEN ; Zhen Hua CHEN ; Can LUO ; Rong Mei YUAN ; Xing Yu ZHOU ; Jian Dong LI ; Xiao Rong YANG ; Ming PAN
Biomedical and Environmental Sciences 2025;38(3):279-289
OBJECTIVE:
This study reports the first imported case of Lassa fever (LF) in China. Laboratory detection and molecular epidemiological analysis of the Lassa virus (LASV) from this case offer valuable insights for the prevention and control of LF.
METHODS:
Samples of cerebrospinal fluid (CSF), blood, urine, saliva, and environmental materials were collected from the patient and their close contacts for LASV nucleotide detection. Whole-genome sequencing was performed on positive samples to analyze the genetic characteristics of the virus.
RESULTS:
LASV was detected in the patient's CSF, blood, and urine, while all samples from close contacts and the environment tested negative. The virus belongs to the lineage IV strain and shares the highest homology with strains from Sierra Leone. The variability in the glycoprotein complex (GPC) among different strains ranged from 3.9% to 15.1%, higher than previously reported for the seven known lineages. Amino acid mutation analysis revealed multiple mutations within the GPC immunogenic epitopes, increasing strain diversity and potentially impacting immune response.
CONCLUSION
The case was confirmed through nucleotide detection, with no evidence of secondary transmission or viral spread. The LASV strain identified belongs to lineage IV, with broader GPC variability than previously reported. Mutations in the immune-related sites of GPC may affect immune responses, necessitating heightened vigilance regarding the virus.
Humans
;
China/epidemiology*
;
Genome, Viral
;
Lassa Fever/virology*
;
Lassa virus/classification*
;
Molecular Epidemiology
;
Phylogeny
10.Association of Longitudinal Change in Fasting Blood Glucose with Risk of Cerebral Infarction in a Patients with Diabetes.
Tai Yang LUO ; Xuan DENG ; Xue Yu CHEN ; Yu He LIU ; Shuo Hua CHEN ; Hao Ran SUN ; Zi Wei YIN ; Shou Ling WU ; Yong ZHOU ; Xing Dong ZHENG
Biomedical and Environmental Sciences 2025;38(8):926-934
OBJECTIVE:
To investigate the association between long-term glycemic control and cerebral infarction risk in patients with diabetes through a large-scale cohort study.
METHODS:
This prospective, community-based cohort study included 12,054 patients with diabetes. From 2006 to 2012, 38,272 fasting blood glucose (FBG) measurements were obtained from these participants. FBG trajectory patterns were generated using latent mixture modelling. Cox proportional hazards models were applied to assess the subsequent risk of cerebral infarction associated with different FBG trajectory patterns.
RESULTS:
At baseline, the mean age of the participants was 55.2 years. Four distinct FBG trajectories were identified based on FBG concentrations and their changes over the 6-year follow-up period. After a median follow-up of 6.9 years, 786 cerebral infarction events were recorded. Different trajectory patterns were associated with significantly varied outcome risks (Log-Rank P < 0.001). Compared with the low-stability group, Hazard Ratio ( HR) adjusted for potential confounders were 1.37 for the moderate-increasing group, 1.23 for the elevated-decreasing group, and 2.08 for the elevated-stable group.
CONCLUSION
Sustained high FBG levels were found to play a critical role in the development of ischemic stroke among patients with diabetes. Controlling FBG levels may reduce the risk of cerebral infarction.
Humans
;
Cerebral Infarction/blood*
;
Middle Aged
;
Male
;
Female
;
Blood Glucose/analysis*
;
Fasting/blood*
;
Aged
;
Prospective Studies
;
Risk Factors
;
Diabetes Mellitus/blood*
;
Adult
;
Proportional Hazards Models

Result Analysis
Print
Save
E-mail