1.Effect of RNF113A on the malignant biological behavior of hepatocellular carcinoma cells
Hai-Jie DAI ; Xia HUANG ; Li-Jun DONG ; Ming-Xuan XING ; Teng-Yue ZOU ; Wen-Xiao LI
Chinese Journal of Current Advances in General Surgery 2024;27(4):275-281
Objective:To explore the effects of RNF113A on the proliferation,migration,in-vasion,apoptosis,and autophagy of hepatocellular carcinoma cells.Methods:Hep3B cells were divided into control group and RNF113A overexpression group(RNF113A-OE),HepG2 was divided into control group and RNF113A knockdown group(si-RNF113A),CCK-8 assay was used to detect changes in cell viability,clone formation assay was used to detect changes in cell proliferation abili-ty,Transwell assay was used to detect changes in cell invasion ability,wound healing assay was used to detect changes in cell migration ability,and flow cytometry was used to detect changes in cell apoptosis ability,Western blot experiments were used to detect changes in protein expression of autophagy related genes and AMPK signaling pathway related genes.Results:Compared with the control group,the proliferation,cloning,invasion,and migration abilities of Hep3B cells in the RNF113A-OE group were improved,while apoptosis and autophagy abilities were decreased,and the AMPK signaling pathway was inhibited;In the si-RNF113A group,the proliferation,cloning,in-vasion,and migration abilities of HepG2 cells were significantly reduced,while apoptosis and au-tophagy abilities were increased,and the activation of the AMPK signaling pathway was promoted.Conclusion:RNF113A promotes the proliferation,cloning,invasion,and migration of hepatocel-lular carcinoma cells,and inhibited apoptosis and autophagy by inhibiting the AMPK signaling path-way.
2.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
4.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
5.Association between serum alkaline phosphatase and type 2 diabetes mellitus with nonalcoholic fatty liver disease
Fangfang QIAN ; Meiqing DAI ; Li ZHAO ; Xia DENG ; Ling YANG ; Jue JIA ; Jifang WANG ; Dong WANG ; Guoyue YUAN
Journal of Clinical Hepatology 2023;39(1):83-88
Objective To investigate the association between serum alkaline phosphatase (ALP) and type 2 diabetes mellitus (T2DM) with nonalcoholic fatty liver disease (NAFLD). Methods A total of 599 patients with T2DM who were hospitalized in Department of Endocrinology, Affiliated Hospital of Jiangsu University, from July 2016 to December 2018 were enrolled as subjects. According to the presence or absence of NAFLD, the patients were divided into NAFLD group with 286 patients and non-NAFLD group with 313 patients, and according to the results of abdominal ultrasound, the patients with NAFLD were divided into mild group with 111 patients, moderate group with 105 patients, and severe group with 70 patients. General clinical data were compared between groups. The independent samples t - test was used for comparison of normally distributed continuous data between two groups, and an analysis of variance was used for comparison between three groups; the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups, and the Kruskal-Wallis H test was used for comparison between three groups; the chi-square test was used for comparison of categorical data between groups. Pearson correlation analysis and Spearman correlation analysis were used to investigate the correlation between ALP and clinical indices, and a logistic regression analysis was used to investigate the influencing factors for NAFLD. Results Compared with the non-NAFLD group, the NAFLD group had significantly higher proportion of patients with history of hypertension ( χ 2 =7.864, P < 0.05), systolic blood pressure ( t =-2.226, P < 0.05), diastolic blood pressure ( t =-3.800, P < 0.05), body mass index (BMI) ( t =-11.842, P < 0.05), waist circumference (WC) ( t =-9.150, P < 0.05), fasting insulin (FINS) ( Z =-6.173, P < 0.05), fasting C-peptide ( t =-5.419, P < 0.05), serum uric acid ( t =-4.957, P < 0.05), low-density lipoprotein cholesterol ( t =-2.702, P < 0.05), triglyceride ( Z =-9.376, P < 0.05), total cholesterol (TC) ( t =-3.016, P < 0.05), Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) ( Z =-5.794, P < 0.05), alanine aminotransferase (ALT) ( Z =-6.737, P < 0.05), aspartate aminotransferase (AST) ( Z =-4.389, P < 0.05), gamma-glutamyl transpeptidase (GGT) ( Z =-7.764, P < 0.05), and ALP ( t =-2.833, P < 0.05), as well as significantly lower age ( t =2.184, P < 0.05) and high-density lipoprotein cholesterol ( Z =-5.273, P < 0.05). The severity of NAFLD (mild, moderate or severe) was positively correlated with age ( r s =0.140, P < 0.05), BMI ( r s =0.239, P < 0.05), WC ( r s =0.222, P < 0.05), FINS ( r s =0.191, P < 0.05), HOMA-IR ( r s =0.218, P < 0.05), ALT ( r s =0.188, P < 0.05), AST ( r s =0.279, P < 0.05), GGT ( r s =0.202, P < 0.05), and ALP ( r s =0.361, P < 0.05). In the patients with T2DM and NAFLD, ALP was positively correlated with HbAlc ( r =0.149, P < 0.05), fasting plasma glucose ( r =0.146, P < 0.05), HOMA-IR ( r s =0.132, P < 0.05), TC ( r =0.151, P < 0.05), ALT ( r s =0.210, P < 0.05), AST ( r s =0.192, P < 0.05), and GGT ( r s =0.297, P < 0.05). The logistic regression analysis showed that ALP was an influencing factor for NAFLD in patients with T2DM (odds ratio=1.013, 95% confidence interval: 1.004-1.023, P < 0.05). Conclusion Elevated serum ALP is a risk factor for T2DM with NAFLD and is closely associated with hyperglycemia, insulin resistance, and hyperlipemia, and ALP may play a role in the development and progression of T2DM and NAFLD.
6.Study on the correlation between xanthelasma palpebrarum and the genetic factor of hypercholesterolemia
Jing WANG ; Chun-Mei HUANG ; Hao-Ying TANG ; Dong-Xia DAI ; Yong-Chu LIU ; Yu-Mei CHEN
International Eye Science 2023;23(4):689-693
AIM: To investigate the correlation between xanthelasma palpebrarum(XP)and the genetic factor of hypercholesterolemia and provide a basis for the elucidation of the pathogenesis of xanthelasma palpebrarum.METHODS: A total of 29 patients with XP who treated in the ophthalmology department of Foshan Sanshui District People's Hospital from November 2019 to January 2021 were selected. Peripheral blood was drawn, and the Next Generation Sequencing(NGS)technology was used to detect the genetic mutations of patients, while blood lipids of XP patients were analyzed.RESULTS: Gene mutations were detected in 21 patients with XP, among which 13 cases had hypercholesterolemia and 8 cases had normal cholesterol levels. Genes including STAP1, APOB, LDLRAP1, LDLR, PCSK9 and APOE mutated, and the types of gene mutation included 3-UTR mutation, in-frame deletion, missense mutation, 5-UTR mutation, synonymous mutation, intronic mutation, alternative splice variant, non coding transcript exon variant, and non coding transcript variant.CONCLUSION: There is a correlation between genetic factors of hypercholesterolemia and XP.
7.Combined fine-needle aspiration with core needle biopsy for assessing thyroid nodules: a more valuable diagnostic method?
Zhe CHEN ; Jia-jia WANG ; Dong-ming GUO ; Yu-xia ZHAI ; Zhuo-zhi DAI ; Hong-hui SU
Ultrasonography 2023;42(2):314-322
Purpose:
This study aimed to evaluate the diagnostic value of combined fine-needle aspiration (FNA) with core needle biopsy (CNB) in thyroid nodules.
Methods:
FNA and CNB were performed simultaneously on 703 nodules. We compared the proportions of inconclusive results and the diagnostic performance for malignancy among FNA, CNB, and combined FNA/CNB for different nodule sizes.
Results:
Combined FNA/CNB showed lower proportions of inconclusive results than CNB for all nodules (2.8% vs. 5.7%, P<0.001), nodules ≤1.0 cm (4.9% vs. 7.3%, P=0.063), nodules >1.0 cm (2.0% vs. 5.0 %, P<0.001), nodules ≤1.5 cm (3.8% vs. 7.9 %, P<0.001), and nodules >1.5 cm (2.1% vs. 3.9 %, P=0.016). The sensitivity of combined FNA/CNB in predicting malignancy was significantly higher than that of CNB (89.0% vs. 80.0%, P<0.001) and FNA (89.0% vs. 58.1%, P<0.001) for all nodules. Within American College of Radiology Thyroid and Imaging Reporting and Data System grades 4-5, in the subgroup of nodules ≤1.5 cm, combined FNA/ CNB showed the best sensitivity in predicting malignancy (91.4%), significantly higher than that of CNB (81.0%, P<0.001) and FNA (57.8%, P<0.001). However, in the subgroup of nodules >1.5 cm, the difference between combined FNA/CNB and CNB was not significant (84.2% vs. 78.9%, P=0.500).
Conclusion
Regardless of nodule size, combined FNA/CNB tended to yield lower proportions of inconclusive results than CNB or FNA alone and exhibited higher performance in diagnosing malignancy. The combined FNA/CNB technique may be a more valuable diagnostic method for nodules ≤1.5 cm and nodules with a risk of malignancy than CNB and FNA alone.
8.Influencing factors of textbook outcomes in liver surgery after radical resection of gallbladder carcinoma: a national multicenter study
Zhipeng LIU ; Xuelei LI ; Haisu DAI ; Weiyue CHEN ; Yuhan XIA ; Wei WANG ; Xianghao YE ; Zhihua LONG ; Yi ZHU ; Fan HUANG ; Chao YU ; Zhaoping WU ; Jinxue ZHOU ; Dong ZHANG ; Rui DING ; Wei CHEN ; Kecan LIN ; Yao CHENG ; Ping YUE ; Yunfeng LI ; Tian YANG ; Jie BAI ; Yan JIANG ; Wei GUO ; Dalong YIN ; Zhiyu CHEN
Chinese Journal of Digestive Surgery 2023;22(7):866-872
Objective:To investigate the influencing factors of textbook outcomes in liver surgery (TOLS) after radical resection of gallbladder carcinoma.Methods:The retrospective case-control study was conducted. The clinicopathological data of 530 patients who underwent radical resection of gallbladder carcinoma in 15 medical centers, including the First Affiliated Hospital of Army Medical University et al, from January 2014 to January 2020 were collected. There were 209 males and 321 females, aged (61±10)years. Patients underwent radical resection of gallbladder carcinoma, including cholecystectomy, hepatectomy, invasive bile duct resection, and lymph node dissection. Observation indicators: (1) situations of TOLS; (2) influencing factors of TOLS. Measure-ment data with normal distribution were represented as Mean± SD, and comparison between groups was conducted using the independent sample t test. Measurement data with skewed distribution were represented as M( Q1, Q3), and comparison between groups was conducted using the Mann-Whitney U test. Count data were described as absolute numbers or percentages, and comparison between groups was conducted using the chi-square test. Comparison of ordinal data between groups was conducted using the Mann-Whitney U test. The univariate analysis was conducted using the corresponding statistical methods based on data type, and variables with P<0.10 were included in multivariate analysis. Multivariate analysis was conducted using the Logistic stepwise regression model. Results:(1) Situations of TOLS. All 530 patients underwent radical resection of gallbladder carcinoma, and there were 498 cases achieving R 0 resection, 508 cases without ≥grade 2 intra-operative adverse events, 456 cases without postoperative grade B and grade C biliary leakage, 513 cases without postoperative grade B and grade C liver failure, 395 cases without severe com-plications within postoperative 90 days, 501 cases did not being re-admission caused by severe com-plications within postoperative 90 days. Of the 530 patients, 54.53%(289/530) of patients achieved postoperative TOLS, while 45.47%(241/530) of patients did not achieve postoperative TOLS. (2) Influencing factors of TOLS. Results of multivariate analysis showed that American Society of Anesthesiologists classification >grade Ⅱ, preoperative jaundice, T staging as T3?T4 stage, N staging as N2 stage, liver resection as right hemi-hepatectomy, and neoadjuvant therapy were independent factors influencing TOLS in patients undergoing radical resection of gallbladder carcinoma ( odds ratio=2.65, 1.87, 5.67, 5.65, 2.55, 3.34, 95% confidence interval as 1.22?5.72, 1.18?2.95, 2.51?12.82, 2.83?11.27, 1.41?4.63, 1.88?5.92, P<0.05). Conclusion:American Society of Anesthesiologists classification >grade Ⅱ, preoperative jaundice, T staging as T3?T4 stage, N staging as N2 stage, liver resection as right hemi-hepatectomy, and neoadjuvant therapy are independent factors influencing TOLS in patients undergoing radical resection of gallbladder carcinoma.
9.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.
10. Treatment advice of small molecule antiviral drugs for elderly COVID-19
Min PAN ; Shuang CHANG ; Xiao-Xia FENG ; Guang-He FEI ; Jia-Bin LI ; Hua WANG ; Du-Juan XU ; Chang-Hui WANG ; Yan SUN ; Xiao-Yun FAN ; Tian-Jing ZHANG ; Wei WEI ; Ling-Ling ZHANG ; Jim LI ; Fei-Hu CHEN ; Xiao-Ming MENG ; Hong-Mei ZHAO ; Min DAI ; Yi XIANG ; Meng-Shu CAO ; Xiao-Yang CHEN ; Xian-Wei YE ; Xiao-Wen HU ; Ling JIANG ; Yong-Zhong WANG ; Hao LIU ; Hai-Tang XIE ; Ping FANG ; Zhen-Dong QIAN ; Chao TANG ; Gang YANG ; Xiao-Bao TENG ; Chao-Xia QIAN ; Guo-Zheng DING
Chinese Pharmacological Bulletin 2023;39(3):425-430
COVID-19 has been prevalent for three years. The virulence of SARS-CoV-2 is weaken as it mutates continuously. However, elderly patients, especially those with underlying diseases, are still at high risk of developing severe infections. With the continuous study of the molecular structure and pathogenic mechanism of SARS-CoV-2, antiviral drugs for COVID-19 have been successively marketed, and these anti-SARS-CoV-2 drugs can effectively reduce the severe rate and mortality of elderly patients. This article reviews the mechanism, clinical medication regimens, drug interactions and adverse reactions of five small molecule antiviral drugs currently approved for marketing in China, so as to provide advice for the clinical rational use of anti-SARS-CoV-2 in the elderly.

Result Analysis
Print
Save
E-mail