1.Differences in Treatment Outcomes Depending on the Adjuvant Treatment Modality in Craniopharyngioma
Byung Min LEE ; Jaeho CHO ; Dong-Seok KIM ; Jong Hee CHANG ; Seok-Gu KANG ; Eui-Hyun KIM ; Ju Hyung MOON ; Sung Soo AHN ; Yae Won PARK ; Chang-Ok SUH ; Hong In YOON
Yonsei Medical Journal 2025;66(3):141-150
Purpose:
Adjuvant treatment for craniopharyngioma after surgery is controversial. Adjuvant external beam radiation therapy (EBRT) can increase the risk of long-term sequelae. Stereotactic radiosurgery (SRS) is used to reduce treatment-related toxicity.In this study, we compared the treatment outcomes and toxicities of adjuvant therapies for craniopharyngioma.
Materials and Methods:
We analyzed patients who underwent craniopharyngioma tumor removal between 2000 and 2017. Of the 153 patients, 27 and 20 received adjuvant fractionated EBRT and SRS, respectively. We compared the local control (LC), progression-free survival (PFS), and overall survival between groups that received adjuvant fractionated EBRT, SRS, and surveillance.
Results:
The median follow-up period was 77.7 months. For SRS and surveillance, the 10-year LC was 57.2% and 57.4%, respectively. No local progression was observed after adjuvant fractionated EBRT. One patient in the adjuvant fractionated EBRT group died owing to glioma 94 months after receiving radiotherapy (10-year PFS: 80%). The 10-year PFS was 43.6% and 50.7% in the SRS and surveillance groups, respectively. The treatment outcomes significantly differed according to adjuvant treatment in nongross total resection (GTR) patients. Additional treatment-related toxicity was comparable in the adjuvant fractionated EBRT and other groups.
Conclusion
Adjuvant fractionated EBRT could be effective in controlling local failure, especially in patients with non-GTR, while maintaining acceptable treatment-related toxicity.
2.Remimazolam, a novel drug, for safe and effective endoscopic sedation
Jae Min LEE ; Yehyun PARK ; Dong Won AHN ; Jun Kyu LEE ; Kwang Hyuck LEE
Clinical Endoscopy 2025;58(3):370-376
Remimazolam is a novel benzodiazepine with unique pharmacokinetic and pharmacodynamic properties, making it an ideal candidate for sedation during endoscopic procedures. Distinguished by its rapid onset and short duration of action, remimazolam offers a safer and more efficient alternative to traditional sedatives, such as midazolam and propofol, with fewer side effects, such as hypotension, bradycardia, and respiratory depression. This article reviews the characteristics of remimazolam and its practical advantages, including ease of use, quick recovery time, and minimal residual sedation, emphasizing its potential to improve patient safety and procedural efficiency in clinical endoscopy settings.
4.Differences in Treatment Outcomes Depending on the Adjuvant Treatment Modality in Craniopharyngioma
Byung Min LEE ; Jaeho CHO ; Dong-Seok KIM ; Jong Hee CHANG ; Seok-Gu KANG ; Eui-Hyun KIM ; Ju Hyung MOON ; Sung Soo AHN ; Yae Won PARK ; Chang-Ok SUH ; Hong In YOON
Yonsei Medical Journal 2025;66(3):141-150
Purpose:
Adjuvant treatment for craniopharyngioma after surgery is controversial. Adjuvant external beam radiation therapy (EBRT) can increase the risk of long-term sequelae. Stereotactic radiosurgery (SRS) is used to reduce treatment-related toxicity.In this study, we compared the treatment outcomes and toxicities of adjuvant therapies for craniopharyngioma.
Materials and Methods:
We analyzed patients who underwent craniopharyngioma tumor removal between 2000 and 2017. Of the 153 patients, 27 and 20 received adjuvant fractionated EBRT and SRS, respectively. We compared the local control (LC), progression-free survival (PFS), and overall survival between groups that received adjuvant fractionated EBRT, SRS, and surveillance.
Results:
The median follow-up period was 77.7 months. For SRS and surveillance, the 10-year LC was 57.2% and 57.4%, respectively. No local progression was observed after adjuvant fractionated EBRT. One patient in the adjuvant fractionated EBRT group died owing to glioma 94 months after receiving radiotherapy (10-year PFS: 80%). The 10-year PFS was 43.6% and 50.7% in the SRS and surveillance groups, respectively. The treatment outcomes significantly differed according to adjuvant treatment in nongross total resection (GTR) patients. Additional treatment-related toxicity was comparable in the adjuvant fractionated EBRT and other groups.
Conclusion
Adjuvant fractionated EBRT could be effective in controlling local failure, especially in patients with non-GTR, while maintaining acceptable treatment-related toxicity.
5.Differences in Treatment Outcomes Depending on the Adjuvant Treatment Modality in Craniopharyngioma
Byung Min LEE ; Jaeho CHO ; Dong-Seok KIM ; Jong Hee CHANG ; Seok-Gu KANG ; Eui-Hyun KIM ; Ju Hyung MOON ; Sung Soo AHN ; Yae Won PARK ; Chang-Ok SUH ; Hong In YOON
Yonsei Medical Journal 2025;66(3):141-150
Purpose:
Adjuvant treatment for craniopharyngioma after surgery is controversial. Adjuvant external beam radiation therapy (EBRT) can increase the risk of long-term sequelae. Stereotactic radiosurgery (SRS) is used to reduce treatment-related toxicity.In this study, we compared the treatment outcomes and toxicities of adjuvant therapies for craniopharyngioma.
Materials and Methods:
We analyzed patients who underwent craniopharyngioma tumor removal between 2000 and 2017. Of the 153 patients, 27 and 20 received adjuvant fractionated EBRT and SRS, respectively. We compared the local control (LC), progression-free survival (PFS), and overall survival between groups that received adjuvant fractionated EBRT, SRS, and surveillance.
Results:
The median follow-up period was 77.7 months. For SRS and surveillance, the 10-year LC was 57.2% and 57.4%, respectively. No local progression was observed after adjuvant fractionated EBRT. One patient in the adjuvant fractionated EBRT group died owing to glioma 94 months after receiving radiotherapy (10-year PFS: 80%). The 10-year PFS was 43.6% and 50.7% in the SRS and surveillance groups, respectively. The treatment outcomes significantly differed according to adjuvant treatment in nongross total resection (GTR) patients. Additional treatment-related toxicity was comparable in the adjuvant fractionated EBRT and other groups.
Conclusion
Adjuvant fractionated EBRT could be effective in controlling local failure, especially in patients with non-GTR, while maintaining acceptable treatment-related toxicity.
7.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
9.Temporal Radiographic Trajectory and Clinical Outcomes in COVID-19Pneumonia: A Longitudinal Study
Dong-Won AHN ; Yeonju SEO ; Taewan GOO ; Ji Bong JEONG ; Taesung PARK ; Soon Ho YOON
Journal of Korean Medical Science 2025;40(9):e25-
Background:
Currently, little is known about the relationship between the temporal radiographic latent trajectories, which are based on the extent of coronavirus disease 2019 (COVID-19) pneumonia and clinical outcomes. This study aimed to elucidate the differences in the temporal trends of critical laboratory biomarkers, utilization of critical care support, and clinical outcomes according to temporal radiographic latent trajectories.
Methods:
We enrolled 2,385 patients who were hospitalized with COVID-19 and underwent serial chest radiographs from December 2019 to March 2022. The extent of radiographic pneumonia was quantified as a percentage using a previously developed deep-learning algorithm. A latent class growth model was used to identify the trajectories of the longitudinal changes of COVID-19 pneumonia extents during hospitalization. We investigated the differences in the temporal trends of critical laboratory biomarkers among the temporal radiographic trajectory groups. Cox regression analyses were conducted to investigate differences in the utilization of critical care supports and clinical outcomes among the temporal radiographic trajectory groups.
Results:
The mean age of the enrolled patients was 58.0 ± 16.9 years old, with 1,149 (48.2%) being male. Radiographic pneumonia trajectories were classified into three groups: The steady group (n = 1,925, 80.7%) exhibited stable minimal pneumonia, the downhill group (n = 135, 5.7%) exhibited initial worsening followed by improving pneumonia, and the uphill group (n = 325, 13.6%) exhibited progressive deterioration of pneumonia. There were distinct differences in the patterns of temporal blood urea nitrogen (BUN) and C-reactive protein (CRP) levels between the uphill group and the other two groups. Cox regression analyses revealed that the hazard ratios (HRs) for the need for critical care support and the risk of intensive care unit admission were significantly higher in both the downhill and uphill groups compared to the steady group. However, regarding in-hospital mortality, only the uphill group demonstrated a significantly higher risk than the steady group (HR, 8.2; 95% confidence interval, 3.08–21.98).
Conclusion
Stratified pneumonia trajectories, identified through serial chest radiographs, are linked to different patterns of temporal changes in BUN and CRP levels. These changes can predict the need for critical care support and clinical outcomes in COVID-19 pneumonia.Appropriate therapeutic strategies should be tailored based on these disease trajectories.
10.Erratum: Korean Gastric Cancer Association-Led Nationwide Survey on Surgically Treated Gastric Cancers in 2023
Dong Jin KIM ; Jeong Ho SONG ; Ji-Hyeon PARK ; Sojung KIM ; Sin Hye PARK ; Cheol Min SHIN ; Yoonjin KWAK ; Kyunghye BANG ; Chung-sik GONG ; Sung Eun OH ; Yoo Min KIM ; Young Suk PARK ; Jeesun KIM ; Ji Eun JUNG ; Mi Ran JUNG ; Bang Wool EOM ; Ki Bum PARK ; Jae Hun CHUNG ; Sang-Il LEE ; Young-Gil SON ; Dae Hoon KIM ; Sang Hyuk SEO ; Sejin LEE ; Won Jun SEO ; Dong Jin PARK ; Yoonhong KIM ; Jin-Jo KIM ; Ki Bum PARK ; In CHO ; Hye Seong AHN ; Sung Jin OH ; Ju-Hee LEE ; Hayemin LEE ; Seong Chan GONG ; Changin CHOI ; Ji-Ho PARK ; Eun Young KIM ; Chang Min LEE ; Jong Hyuk YUN ; Seung Jong OH ; Eunju LEE ; Seong-A JEONG ; Jung-Min BAE ; Jae-Seok MIN ; Hyun-dong CHAE ; Sung Gon KIM ; Daegeun PARK ; Dong Baek KANG ; Hogoon KIM ; Seung Soo LEE ; Sung Il CHOI ; Seong Ho HWANG ; Su-Mi KIM ; Moon Soo LEE ; Sang Hyun KIM ; Sang-Ho JEONG ; Yusung YANG ; Yonghae BAIK ; Sang Soo EOM ; Inho JEONG ; Yoon Ju JUNG ; Jong-Min PARK ; Jin Won LEE ; Jungjai PARK ; Ki Han KIM ; Kyung-Goo LEE ; Jeongyeon LEE ; Seongil OH ; Ji Hun PARK ; Jong Won KIM ;
Journal of Gastric Cancer 2025;25(2):400-402

Result Analysis
Print
Save
E-mail