1.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
2.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
3.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
4.The 2024 Guidelines for Osteoporosis - Korean Society of Menopause
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong- Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(1):1-23
5.The 2024 Guidelines for Osteoporosis - Korean Society of Menopause: Part II
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(2):55-77
6.Corrigendum: 2023 Korean Society of Menopause - Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(2):126-126
7.Position Statement: Atypical Femoral Fracture from the Korean Society for Bone and Mineral Research in 2023
Jae-Hwi NHO ; Byung-Woong JANG ; Dong Woo LEE ; Jae-Hyun KIM ; Tae Kang LIM ; Soo Min CHA ; Dong-Kyo SEO ; Yong-Geun PARK ; Dong-Geun KANG ; Young-Kyun LEE ; Yong-Chan HA
Journal of Bone Metabolism 2023;30(3):209-217
As the aging population increases, the number of patients with osteoporosis is gradually rising. Osteoporosis is a metabolic bone disease characterized by low bone mass and the microarchitectural deterioration of bone tissue, resulting in reduced bone strength and an increased risk of low-energy or fragility fractures. Thus, the use of anti-resorptive agents, such as bisphosphonates (BPs), to prevent osteoporotic fractures is growing annually. BPs are effective in reducing hip and other fractures. However, the longer a patient takes BPs, the higher the risk of an atypical femoral fracture (AFF). The exact mechanism by which long-term BP use affects the development of AFFs has not yet been clarified. However, several theories have been suggested to explain the pathogenesis of AFFs, such as suppressed bone remodeling, impaired bone healing, altered bone quality, and femoral morphology. The management of AFFs requires both medical and surgical approaches. BPs therapy should be discontinued immediately, and calcium and vitamin D levels should be evaluated and supplemented if insufficient. Teriparatide can be used for AFFs. Intramedullary nailing is the primary treatment for complete AFFs, and prophylactic femoral nailing is recommended if signs of an impending fracture are detected.
8.Comparison of Clinical Outcomes for Femoral Neck System and Cannulated Compression Screws in the Treatment of Femoral Neck Fracture
Jae Kwang HWANG ; KiWon LEE ; Dong-Kyo SEO ; Joo-Yul BAE ; Myeong-Geun SONG ; Hansuk CHOI
Journal of the Korean Fracture Society 2023;36(3):77-84
Purpose:
This study compared the clinical and radiological results of the femoral neck system (FNS) and cannulated compression screws (CCS) for the fixation of femoral neck fractures.
Materials and Methods:
Patients who underwent FNS or CCS internal fixation for femoral neckfractures between January 2016 and January 2022 were analyzed retrospectively. The hip joint function using the Harris hip score (HHS) was evaluated three months and one year after surgery. The operation time, fracture healing time, and associated surgical complications in the two groups were compared and analyzed statistically.
Results:
Seventy-nine patients were categorized into 38 FNS and 41 CCS groups. The FNS group had a longer operation time and higher postoperative HHS at three months (p<0.01). Femoral neck shortening was lower in the FNS group (p=0.022). There were no significant differences in the fracture healing time and other complications.
Conclusion
There were no differences in most clinical outcomes and complications between the two groups except for the three-month HHS and femoral neck shortening. This study suggests that FNS could be an alternative to CCS for treating femoral neck fractures.
9.Simple Postoperative Exercise of Acute Achilles Tendon Rupture without Active Range of Motion Exercise
Jae-Kwang HWANG ; Youngjoo JUNG ; Dong-Kyo SEO
Journal of Korean Foot and Ankle Society 2023;27(1):12-16
Purpose:
Postoperative exercise for acute Achilles tendon rupture is important for a patient’s return to daily life and sports. On the other hand, the protocol requires considerable effort to educate patients and continuous checking. This study evaluated the outcome of a new simple and delayed rehabilitation protocol after Achilles tendon rupture repair.
Materials and Methods:
From July 2014 to November 2020, one hundred eighty-three patients were operated on by one surgeon. The exercise protocol was classified into two methods. One group (immediate protocol, control group) started immediate full weight bearing with a 20° plantar flexion range of motion from two days postoperatively. Ankle dorsiflexion was restricted to 0°. The other group (delayed protocol, case group) started full weight bearing with a controlled ankle motion boot from two weeks postoperatively. No range of motion exercise was allowed until six weeks postoperatively. Age, sex, body mass index, ankle range of motion, muscle power, time to return to previous physical activity, functional score, and complication rate were evaluated. The results of the two groups were compared using a Mann–Whitney test. Statistical significance was set as p<0.05.
Results:
The range of motion, double heel rising, and one-leg standing were achieved faster in the control group (p<0.05). However, single-heel rising, repeated single-heel rising, return to previous activity (work, run, and sport), and functional scores showed no statistical difference (p>0.05).
Conclusion
Simple and delayed postoperative rehabilitation of acute Achilles tendon rupture without active range of motion exercises showed satisfactory functional results and a low complication rate.
10.Prediction of Early Recanalization after Intravenous Thrombolysis in Patients with Large-Vessel Occlusion
Young Dae KIM ; Hyo Suk NAM ; Joonsang YOO ; Hyungjong PARK ; Sung-Il SOHN ; Jeong-Ho HONG ; Byung Moon KIM ; Dong Joon KIM ; Oh Young BANG ; Woo-Keun SEO ; Jong-Won CHUNG ; Kyung-Yul LEE ; Yo Han JUNG ; Hye Sun LEE ; Seong Hwan AHN ; Dong Hoon SHIN ; Hye-Yeon CHOI ; Han-Jin CHO ; Jang-Hyun BAEK ; Gyu Sik KIM ; Kwon-Duk SEO ; Seo Hyun KIM ; Tae-Jin SONG ; Jinkwon KIM ; Sang Won HAN ; Joong Hyun PARK ; Sung Ik LEE ; JoonNyung HEO ; Jin Kyo CHOI ; Ji Hoe HEO ;
Journal of Stroke 2021;23(2):244-252
Background:
and Purpose We aimed to develop a model predicting early recanalization after intravenous tissue plasminogen activator (t-PA) treatment in large-vessel occlusion.
Methods:
Using data from two different multicenter prospective cohorts, we determined the factors associated with early recanalization immediately after t-PA in stroke patients with large-vessel occlusion, and developed and validated a prediction model for early recanalization. Clot volume was semiautomatically measured on thin-section computed tomography using software, and the degree of collaterals was determined using the Tan score. Follow-up angiographic studies were performed immediately after t-PA treatment to assess early recanalization.
Results:
Early recanalization, assessed 61.0±44.7 minutes after t-PA bolus, was achieved in 15.5% (15/97) in the derivation cohort and in 10.5% (8/76) in the validation cohort. Clot volume (odds ratio [OR], 0.979; 95% confidence interval [CI], 0.961 to 0.997; P=0.020) and good collaterals (OR, 6.129; 95% CI, 1.592 to 23.594; P=0.008) were significant factors associated with early recanalization. The area under the curve (AUC) of the model including clot volume was 0.819 (95% CI, 0.720 to 0.917) and 0.842 (95% CI, 0.746 to 0.938) in the derivation and validation cohorts, respectively. The AUC improved when good collaterals were added (derivation cohort: AUC, 0.876; 95% CI, 0.802 to 0.950; P=0.164; validation cohort: AUC, 0.949; 95% CI, 0.886 to 1.000; P=0.036). The integrated discrimination improvement also showed significantly improved prediction (0.097; 95% CI, 0.009 to 0.185; P=0.032).
Conclusions
The model using clot volume and collaterals predicted early recanalization after intravenous t-PA and had a high performance. This model may aid in determining the recanalization treatment strategy in stroke patients with large-vessel occlusion.

Result Analysis
Print
Save
E-mail