1.Changes in the body shape and ergonomic compatibility for functional dimensions of desks and chairs for students in Harbin during 2010-2024
Chinese Journal of School Health 2025;46(3):315-320
Objective:
To analyze the change trends in the body shape indicators and proportions of students in Harbin from 2010 to 2024, and to investigate ergonomic compatibility of functional dimensions of school desks and chairs with current student shape indicators, so as to provide a reference for revising furniture standards of desks and chairs.
Methods:
Between September and November of both 2010 and 2024, a combination of convenience sampling and stratified cluster random sampling was conducted across three districts in Harbin, yielding samples of 6 590 and 6 252 students, respectively. Anthropometric shape indicators cluding height, sitting height, crus length, and thigh length-and their proportional changes were compared over the 15-year period. The 2024 data were compared with current standard functional dimensions of school furniture. The statistical analysis incorporated t-test and Mann-Whitney U- test.
Results:
From 2010 to 2024, average height increased by 1.8 cm for boys and 1.5 cm for girls; sitting height increased by 1.5 cm for both genders; crus length increased by 0.3 cm for boys and 0.4 cm for girls; and thigh length increased by 0.5 cm for both genders. The ratios of sitting height to height, and sitting height to leg length increased by less than 0.1 . The difference between desk chair height and 1/3 sitting height ranged from 0.4-0.8 cm. Among students matched with size 0 desks and chairs, 22.0% had a desk to chair height difference less than 0, indicating that the desk to chair height difference might be insufficient for taller students. The differences between seat height and fibular height ranged from -1.4 to 1.1 cm; and the differences between seat depth and buttock popliteal length ranged from -9.8 to 3.4 cm. Among obese students, the differences between seat width and 1/2 hip circumference ranged from -20.5 to -8.7 cm, while it ranged from -12.2 to -3.8 cm among non obese students.
Conclusion
Current furniture standards basically satisfy hygienic requirements; however, in the case of exceptionally tall and obese students, ergonomic accommodations such as adaptive seating allocation or personalized adjustments are recommended to meet hygienic requirements.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
6.Effects of polylactic acid-glycolic acid copolymer/lysine-grafted graphene oxide nanoparticle composite scaffolds on osteogenic differentiation of MC3T3 cells
Shuangqi YU ; Fan DING ; Song WAN ; Wei CHEN ; Xuejun ZHANG ; Dong CHEN ; Qiang LI ; Zuoli LIN
Chinese Journal of Tissue Engineering Research 2025;29(4):707-712
BACKGROUND:How to effectively promote bone regeneration and bone reconstruction after bone injury has always been a key issue in clinical bone repair research.The use of biological and degradable materials loaded with bioactive factors to treat bone defects has excellent application prospects in bone repair. OBJECTIVE:To investigate the effect of polylactic acid-glycolic acid copolymer(PLGA)composite scaffold modified by lysine-grafted graphene oxide nanoparticles(LGA-g-GO)on osteogenic differentiation and new bone formation. METHODS:PLGA was dissolved in dichloromethane and PLGA scaffold was prepared by solvent evaporation method.PLGA/GO composite scaffolds were prepared by dispersing graphene oxide uniformly in PLGA solution.LGA-g-GO nanoparticles were prepared by chemical grafting method,and the PLGA/LGA-g-GO composite scaffolds were constructed by blending LGA-g-GO nanoparticles at different mass ratios(1%,2%,and 3%)with PLGA.The micromorphology,hydrophilicity,and protein adsorption capacity of scaffolds of five groups were characterized.MC3T3 cells were inoculated on the surface of scaffolds of five groups to detect cell proliferation and osteogenic differentiation. RESULTS AND CONCLUSION:(1)The surface of PLGA scaffolds was smooth and flat under scanning electron microscope,while the surface of the other four scaffolds was rough.The surface roughness of the composite scaffolds increased with the increase of the addition of LGA-g-GO nanoparticles.The water contact angle of PLGA/LGA-g-GO(3%)composite scaffolds was lower than that of the other four groups(P<0.05).The protein adsorption capacity of PLGA/LGA-g-GO(1%,2%,and 3%)composite scaffolds was stronger than PLGA and PLGA/GO scaffolds(P<0.05).(2)CCK-8 assay showed that PLGA/LGA-g-GO(2%,3%)composite scaffold could promote the proliferation of MC3T3 cells.Alkaline phosphatase staining and alizarin red staining showed that the cell alkaline phosphatase activity in PLGA/LGA-g-GO(2%,3%)group was higher than that in the other three groups(P<0.05).The calcium deposition in the PLGA/GO and PLGA/LGA-g-GO(1%,2%,and 3%)groups was higher than that in the PLGA group(P<0.05).(3)In summary,PLGA/LGA-g-GO composite scaffold can promote the proliferation and osteogenic differentiation of osteoblasts,and is conducive to bone regeneration and bone reconstruction after bone injury.
7.Plasma Metabolomic Analysis of Colorectal Cancer Patients with Spleen-Qi Deficiency and Damp-heat Stasis-toxin Syndrome Based on UPLC-Q-Exactive-Orbitrap-MS
Siting MENG ; Lihuiping TAO ; Dong ZHANG ; Qinchang ZHANG ; Yiping FAN ; Haibo CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):130-137
ObjectiveTo observe and analyze the plasma metabolite differences among colorectal cancer patients with spleen-qi deficiency, damp-heat stasis-toxin syndrome(SRYD), non-spleen-qi deficiency, damp-heat stasis-toxin syndrome(non-SRYD), and normal human beings(Normal), aiming to identify unique metabolites specific to SRYD colorectal cancer patients and their potential biomarkers. MethodsBased on the diagnostic criteria of SRYD and non-SRYD colorectal cancer, 30 patients were included, including 10 patients with SRYD colorectal cancer and 20 patients with non-SRYD colorectal cancer, while 10 individuals were recruited for the Normal group. Metabolome sequencing of plasma from the three groups was performed by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap mass spectrometry(UPLC-Q-Exactive-Orbitrap-MS). Multivariate statistical analysis were performed by principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA), and the intergroup differential metabolites were identified based on variable importance in the projection(VIP) value>1 and t-test P<0.05. And pathway enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG) was performed to explore the metabolites and metabolic pathways specific to SRYD colorectal cancer patients. ResultsMetabolome sequencing results showed some differences in metabolic profiles between the groups. A total of 111 plasma differential metabolites were found in the SRYD group and the Normal group, of which 31 were up-regulated and 80 were down-regulated, mainly including stearoyl lysophosphatidylcholine, indole-3-acrylic acid, and dehydroepiandrosterone sulfate(P<0.05). The non-SRYD group exhibited 97 differentially expressed metabolites compared to the Normal group, with 36 up-regulated and 61 down-regulated, mainly including stearoyl lysophosphatidylcholine, sphingosine, and palmitoyl lysophosphatidylcholine(P<0.05). And the SRYD group exhibited 19 differentially expressed metabolites compared to the non-SRYD group, of which 5 were up-regulated and 14 were down-regulated, mainly including dihydrosphingosine, palmitic acid, and linoleoylethanolamide(P<0.05). The significant differential metabolites were subjected to KEGG analysis to obtain significantly enriched metabolic pathways in each group, and the results showed that 11 metabolic pathways such as primary bile acid synthesis, cholesterol metabolism and bile secretion were differential signaling pathways specific to SRYD colorectal cancer. Further retrieval of the above key signaling pathways showed that bile acids were up-regulated in both bile secretion and primary bile acid synthesis pathways, and there was a trend of up-regulation of glycochenodeoxycholic acid, taurochenodeoxycholic acid, and chenodeoxycholic acid. ConclusionPrimary bile acid synthesis, cholesterol metabolism, and bile secretion-related pathways may be differential signaling pathways specific to SRYD colorectal cancer, and bile acid is a core molecule in the metabolic pathway, which can serve as potential biomarkers closely related to the development and progression of SRYD colorectal cancer.
8.Plasma Metabolomic Analysis of Colorectal Cancer Patients with Spleen-Qi Deficiency and Damp-heat Stasis-toxin Syndrome Based on UPLC-Q-Exactive-Orbitrap-MS
Siting MENG ; Lihuiping TAO ; Dong ZHANG ; Qinchang ZHANG ; Yiping FAN ; Haibo CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):130-137
ObjectiveTo observe and analyze the plasma metabolite differences among colorectal cancer patients with spleen-qi deficiency, damp-heat stasis-toxin syndrome(SRYD), non-spleen-qi deficiency, damp-heat stasis-toxin syndrome(non-SRYD), and normal human beings(Normal), aiming to identify unique metabolites specific to SRYD colorectal cancer patients and their potential biomarkers. MethodsBased on the diagnostic criteria of SRYD and non-SRYD colorectal cancer, 30 patients were included, including 10 patients with SRYD colorectal cancer and 20 patients with non-SRYD colorectal cancer, while 10 individuals were recruited for the Normal group. Metabolome sequencing of plasma from the three groups was performed by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap mass spectrometry(UPLC-Q-Exactive-Orbitrap-MS). Multivariate statistical analysis were performed by principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA), and the intergroup differential metabolites were identified based on variable importance in the projection(VIP) value>1 and t-test P<0.05. And pathway enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG) was performed to explore the metabolites and metabolic pathways specific to SRYD colorectal cancer patients. ResultsMetabolome sequencing results showed some differences in metabolic profiles between the groups. A total of 111 plasma differential metabolites were found in the SRYD group and the Normal group, of which 31 were up-regulated and 80 were down-regulated, mainly including stearoyl lysophosphatidylcholine, indole-3-acrylic acid, and dehydroepiandrosterone sulfate(P<0.05). The non-SRYD group exhibited 97 differentially expressed metabolites compared to the Normal group, with 36 up-regulated and 61 down-regulated, mainly including stearoyl lysophosphatidylcholine, sphingosine, and palmitoyl lysophosphatidylcholine(P<0.05). And the SRYD group exhibited 19 differentially expressed metabolites compared to the non-SRYD group, of which 5 were up-regulated and 14 were down-regulated, mainly including dihydrosphingosine, palmitic acid, and linoleoylethanolamide(P<0.05). The significant differential metabolites were subjected to KEGG analysis to obtain significantly enriched metabolic pathways in each group, and the results showed that 11 metabolic pathways such as primary bile acid synthesis, cholesterol metabolism and bile secretion were differential signaling pathways specific to SRYD colorectal cancer. Further retrieval of the above key signaling pathways showed that bile acids were up-regulated in both bile secretion and primary bile acid synthesis pathways, and there was a trend of up-regulation of glycochenodeoxycholic acid, taurochenodeoxycholic acid, and chenodeoxycholic acid. ConclusionPrimary bile acid synthesis, cholesterol metabolism, and bile secretion-related pathways may be differential signaling pathways specific to SRYD colorectal cancer, and bile acid is a core molecule in the metabolic pathway, which can serve as potential biomarkers closely related to the development and progression of SRYD colorectal cancer.
9.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
10.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.


Result Analysis
Print
Save
E-mail