1.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
2.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
3.Applications of artificial intelligence in the research of molecular mechanisms of traditional Chinese medicine formulas.
Hongyu CHEN ; Ruotian TANG ; Mei HONG ; Jing ZHAO ; Dong LU ; Xin LUAN ; Guangyong ZHENG ; Weidong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1329-1341
Traditional Chinese medicine formula (TCMF) represents a fundamental component of Chinese medical practice, incorporating medical knowledge and practices from both Han Chinese and various ethnic minorities, while providing comprehensive insights into health and disease. The foundation of TCMF lies in its holistic approach, manifested through herbal compatibility theory, which has emerged from extensive clinical experience and evolved into a highly refined knowledge system. Within this framework, Chinese herbal medicines exhibit intricated characteristics, including multi-component interactions, diverse target sites, and varied biological pathways. These complexities pose significant challenges for understanding their molecular mechanisms. Contemporary advances in artificial intelligence (AI) are reshaping research in traditional Chinese medicine (TCM), offering immense potential to transform our understanding of the molecular mechanisms underlying TCMFs. This review explores the application of AI in uncovering these mechanisms, highlighting its role in compound absorption, distribution, metabolism, and excretion (ADME) prediction, molecular target identification, compound and target synergy recognition, pharmacological mechanisms exploration, and herbal formula optimization. Furthermore, the review discusses the challenges and opportunities in AI-assisted research on TCMF molecular mechanisms, promoting the modernization and globalization of TCM.
Artificial Intelligence
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Humans
;
Medicine, Chinese Traditional
;
Animals
4.A reporter gene assay for determining antibody-dependent cell-mediated phagocytosis activity of HER2-targeted antibody drug conjugate.
Ying CHEN ; Can WANG ; Qin ZHAO ; Mingren WANG ; Tiantian LI ; Shanshan DONG ; Hong SHAO ; Weidong XU
Chinese Journal of Biotechnology 2025;41(8):3122-3130
To develop a method for determining the antibody-dependent cell-mediated phagocytosis (ADCP) activity of human epidermal growth factor receptor 2 (HER2)-targeted antibody drug conjugate (ADC) based on the reporter gene assay, we established an ADCP activity assay with Jurkat/NFAT/FcγRIIa cells as the effector cells and BT474 as the target cells. Then, the target cell density, the ratio of effector to target cells, the target cell adhesion time, the incubation time for drug administration, and the induction time after adding effector cells were optimized by the method of design of experiment (DOE). The method showed a significant dose-response relationship, which was complied with the four-parameter equation: y=(A-D)/[1+(x/C)B]+D. The durability ranges of the target cell density, the ratio of effector to target cells, the target cell adhesion time, the incubation time for drug administration, and the induction time after adding effector cells were (2.5-4.0)×105 cells/mL, 3-5, 1.0-2.0 h, 0 h, and 5.0-6.0 h, respectively. The results of the methodological validation showed that the linear equation was y=1.106 8x-0.011 6, r=0.969 2. The established method showed the relative accuracy ranging from -6.59% to 2.98% and the geometric coefficient of variation less than 11% in the intermediate precision test. Furthermore, the method was target-specific. The method was then applied to the determination of ADCP activity of HER2-targeted ADC, demonstrating the result of (103.5±5.7)%. We developed a reporter gene assay for determining the ADCP activity of HER2-targeted ADC and the assay demonstrated high accuracy and good reproducibility, which proposes a highly efficient and approache for evaluating ADCP effect of this HER2-targeted ADC, and also provides a referable technique for characterizing the Fc effector functions of ADCs with diverse targets.
Humans
;
Receptor, ErbB-2/immunology*
;
Phagocytosis/drug effects*
;
Immunoconjugates/immunology*
;
Genes, Reporter
;
Antibody-Dependent Cell Cytotoxicity
;
Jurkat Cells
5.Safety of modified radical prostatectomy by transperineal injection of sodium hyaluronate to the Dirichlet gap: an animal experiment
Jinbang WU ; Bo ZHU ; Weidong CHEN ; Fei CHEN ; Chunhong FAN ; Tingting YU ; Taotao DONG ; Xun LIU ; Yunhan WANG ; Zili WANG
Journal of Modern Urology 2024;29(3):268-272
【Objective】 To explore the safety of transrectal ultrasound-guided transperineal injection of sodium hyaluronate to expand the Dirichlet gap in laparoscopic radical prostatectomy. 【Methods】 A total of 14 healthy male purebred beagle dogs were selected and randomly divided into 2 groups, with 7 in either group.The control group was treated with conventional laparoscopic radical prostatectomy, while the experimental group was treated with laparoscopic radical prostatectomy after 2.5 mL sodium hyaluronate was injected into the Dirichlet gap under the guidance of transrectal ultrasound.The total operation time, prostate separation time, intraoperative blood loss and rectal status of the 2 groups were observed. 【Results】 After the injection of sodium hyaluronate into the Dirichlet gap between the prostate and the rectum, no rectal tissue was found in the prostate, and no obvious damage was found in the posterior rectum in either groups.The postoperative hemoglobin (HGB) was [(118.70±2.56) g/L vs.(122.10±2.19) g/L, P=0.02]; the total operation time was [(141.40±9.80) min vs.(119.10±9.16) min, P<0.05]; the prostate separation time was [(24.99±1.75) min vs.(16.64±2.34) min, P<0.05]; the amount of bleeding was [(47.43±4.32) mL vs.(34.86±5.18) mL, P<0.05] in the control group and experimental group. 【Conclusion】 Laparoscopic radical prostatectomy performed after 2.5 mL of sodium hyaluronate injection into the Dirichlet gap under the guidance of transrectal ultrasound can shorten the total operation time, the separation and resection time of the prostate, and reduce the amount of bleeding, which can improve and reduce the incidence of rectal injury, and prove the feasibility of this approach for prostatic cancer.
6.Effects of icariin on proliferation and differentiation of MC3T3-E1 cells in an inflammatory environment
Yue HAN ; Yufei WANG ; Wanqing LIU ; Ming DONG ; Weidong NIU
Chinese Journal of Tissue Engineering Research 2024;28(23):3709-3714
BACKGROUND:Studies have shown that chronic apical periodontitis is one of the common inflammatory bone destruction diseases.Icariin can promote osteogenic differentiation,inhibit bone resorption,and may play a protective role in bone destruction caused by chronic apical periodontitis. OBJECTIVE:To investigate the effect of icariin on the proliferation and differentiation of MC3T3-E1 cells in the inflammatory environment stimulated by lipopolysaccharides. METHODS:Lipopolysaccharides were used to stimulate MC3T3-E1 cells to establish an inflammatory environment in vitro,and cell counting kit-8 was used to detect the best concentration and optimal action time of lipopolysaccharides.Cell counting kit-8 was used to detect the optimal concentration of icariin under the stimulation of lipopolysaccharides at a concentration of 1 μg/mL.Alkaline phosphatase detection,Real-time PCR and western blot assay were used to detect the effect of icariin on osteogenic differentiation of MC3T3-E1 cells in the inflammatory environment.Real-time PCR and western blot were used to detect the effects of icariin on the expression of interleukin-1β and interleukin-6 in MC3T3-E1 cells in the lipopolysaccharide-stimulated inflammatory environment. RESULTS AND CONCLUSION:Cell counting kit-8 results showed that the optimal concentration of icariin was 0.1 μg/mL.In the inflammatory environment,icariin enhanced the expression of alkaline phosphatase and promoted osteoblast differentiation.Compared with the lipopolysaccharide group,the expression of osteogenesis-related factors alkaline phosphatase and Runx2 was increased in the lipopolysaccharide+icariin group.Compared with the lipopolysaccharide group,the expression levels of inflammation-related factors interleukin-1β and interleukin-6 decreased in the lipopolysaccharide+icariin group.To conclude,lipopolysaccharides weaken the osteogenic ability of MC3T3-E1 cells and aggravate the inflammatory response,but icariin has a protective effect on them.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Analysis of family mutation type and two-hit hypothesis of a familial VHL Syndrome patient
Jun PAN ; Yuxin CHEN ; Yanwen LU ; Xiang DONG ; Haiyang YANG ; Gutian ZHANG ; Weidong GAN ; Hongqian GUO
Journal of Modern Urology 2023;28(9):799-804
【Objective】 To explore the mutation type, clinical characteristics, molecular genetics and the two-hit type of a patient with familial Von Hippel Lindau (VHL) syndrome. 【Methods】 The data of the patient were collected. DNA was extracted from the peripheral blood and renal cell carcinoma sample. The VHL gene germline mutation site was detected with high throughput sequencing next generation sequencing (NGS). The two-hit site was identified with UCSCXena database, methylation-specific PCR (MSP) and microsatellite stability detection. 【Results】 The mutation site of the embryo line was located in c.500G>A R167Q mutation. The patient had single nucleotide polymorphism, but no clear loss of heterozygosity, methylation or system mutation. 【Conclusion】 The germline mutation in exon 3 is the basis for the clinical features of this familial renal cell carcinoma proband. The identification of the two-hit site is key to the occurrence of the disease, which is significant for the diagnosis and treatment. The use of the databases can guide the screening of mutations and methylation sites in familial renal cell carcinoma.
9.MicroRNA in acute kidney injury due to sepsis
Clinical Medicine of China 2023;39(5):385-388
Sepsis is a life-threatening clinical syndrome characterized by organ dysfunction caused by dysregulation of the body's immune response to infection, and is the primary cause of acute kidney injury in critically ill patients. Sepsis induced AKI (S-AKI) is a common clinical critical illness with a high mortality rate and is closely associated with the clinical outcome of critically ill patients. At present, the clinical diagnosis of AKI is still based on the traditional indicators such as serum creatinine and urine output, but it is easily interfered by age, gender, drugs and other factors, and cannot accurately and sensitively reflect the renal damage of patients, so that some AKI patients lose the best time for treatment. Therefore, some biomarkers with strong sensitivity and high specificity are urgently needed in the clinic to help the diagnosis of AKI, so as to take active therapeutic measures to alleviate the prognosis of AKI.Numerous studies have shown that microRNAs (miRNAs) are involved in the development of S-AKI. Therefore, miRNAs can not only be early diagnostic markers of S-AKI, but also have important potential value for the treatment and prognosis of S-AKI. In this paper, we review the potential value of miRNA for the diagnosis, prognosis and treatment of S-AKI.
10.The cell biological function and clinical significance of PRC1 in pancreatic carcinoma
Dandan Ma ; Yi Zhang ; Zhenyu Lin ; Qingtai Dong ; Zhengkang Xiao ; Zhonghu Li ; Zhiyong Zhang ; Weidong Jin
Acta Universitatis Medicinalis Anhui 2023;58(2):189-195
Objective :
To investigate the expression and prognosis of protein regulator of cytokinesis 1 ( PRC1) in pancreatic carcinoma tissues.Moreover,to explore the effects of PRC1 on the biological functions of pancreatic carcinoma cell line SW1990 and its related mechanisms.
Methods:
The GEPIA database was used to analyze the expression difference of PRC1 in pancreatic carcinoma tissues and normal pancreatic tissues.Overexpression and interference of PRC1 were achieved by Lipofectamine 3000 transfection plasmid or shRNA method.Then CCK-8 assay,Transwell assay and flow cytometry were used to detect the proliferation level,invasion ability and apoptosis of the SW1990 cells,respectively.The pancreatic carcinoma data were collected from the Cancer Genome Atlas (TCGA) database.The correlation between expression level of PRC1 and clinicopathological features of pancreatic carcinoma was analyzed.The STRING database was used to analyze the network of proteins interacting with PRC1 . Gene set enrichment analysis ( GSEA) was used to predict the possible signal pathways of PRC1 in pancreatic car- cinoma.
Results:
GEPIA database results showed that PRC1 expression in pancreatic carcinoma tissue was higher than that in normal pancreatic tissue (P<0.05) .The results of CCK-8 assay,Transwell assay and flow cytometry showed that PRC1 overexpression significantly enhanced SW1990 cell proliferation,invasion and inhibited apoptosis (P<0. 01) .Whereas PRC1 interference significantly inhibited SW1990 cell proliferation,invasion and enhanced apoptosis (P<0. 01) .TCGA database data analysis identified PRC1 mRNA expression level and M stage were independent risk factors affecting the prognosis of pancreatic carcinoma (P<0. 05) .STRING database showed that there was an interaction between PRC1 and PLK1 and so on.GSEA research results showed that the PRC1 mRNA high expression samples were enriched into P53 signaling pathway and so on (P<0. 05) .
Conclusion
PRC1 is highly expressed in pancreatic carcinoma,and it is associated with proliferation,invasion,apoptosis and prognosis of pancreatic carcinoma.Moreover,it plays an important role in pancreatic carcinoma by regulating interacting proteins PLK1 and activating P53 signaling pathways.


Result Analysis
Print
Save
E-mail