1.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
2.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
3.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
4.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
5.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
6.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
7.Introduction to the forensic research via omics markers in environmental health vulnerable areas (FROM) study
Jung-Yeon KWON ; Woo Jin KIM ; Yong Min CHO ; Byoung-gwon KIM ; Seungho LEE ; Jee Hyun RHO ; Sang-Yong EOM ; Dahee HAN ; Kyung-Hwa CHOI ; Jang-Hee LEE ; Jeeyoung KIM ; Sungho WON ; Hee-Gyoo KANG ; Sora MUN ; Hyun Ju YOO ; Jung-Woong KIM ; Kwan LEE ; Won-Ju PARK ; Seongchul HONG ; Young-Seoub HONG
Epidemiology and Health 2024;46(1):e2024062-
This research group (forensic research via omics markers in environmental health vulnerable areas: FROM) aimed to develop biomarkers for exposure to environmental hazards and diseases, assess environmental diseases, and apply and verify these biomarkers in environmentally vulnerable areas. Environmentally vulnerable areas—including refineries, abandoned metal mines, coal-fired power plants, waste incinerators, cement factories, and areas with high exposure to particulate matter—along with control areas, were selected for epidemiological investigations. A total of 1,157 adults, who had resided in these areas for over 10 years, were recruited between June 2021 and September 2023. Personal characteristics of the study participants were gathered through a survey. Biological samples, specifically blood and urine, were collected during the field investigations, separated under refrigerated conditions, and then transported to the laboratory for biomarker analysis. Analyses of heavy metals, environmental hazards, and adducts were conducted on these blood and urine samples. Additionally, omics analyses of epigenomes, proteomes, and metabolomes were performed using the blood samples. The biomarkers identified in this study will be utilized to assess the risk of environmental disease occurrence and to evaluate the impact on the health of residents in environmentally vulnerable areas, following the validation of diagnostic accuracy for these diseases.
8.The Korean Academy of Asthma Allergy and Clinical Immunology guidelines for sublingual immunotherapy
Gwanghui RYU ; Hye Mi JEE ; Hwa Young LEE ; Sung-Yoon KANG ; Kyunghoon KIM ; Ju Hee KIM ; Kyung Hee PARK ; So-Young PARK ; Myong Soon SUNG ; Youngsoo LEE ; Eun-Ae YANG ; Jin-Young MIN ; Eun Kyo HA ; Sang Min LEE ; Yong Won LEE ; Eun Hee CHUNG ; Sun Hee CHOI ; Young-Il KOH ; Seon Tae KIM ; Dong-Ho NAHM ; Jung Won PARK ; Jung Yeon SHIM ; Young Min AN ; Man Yong HAN ; Jeong-Hee CHOI ; Yoo Seob SHIN ; Doo Hee HAN ;
Allergy, Asthma & Respiratory Disease 2024;12(3):125-133
Allergen immunotherapy (AIT) has been used for over a century and has been demonstrated to be effective in treating patients with various allergic diseases. AIT allergens can be administered through various routes, including subcutaneous, sublingual, intralymphatic, oral, or epicutaneous routes. Sublingual immunotherapy (SLIT) has recently gained clinical interest, and it is considered an alternative treatment for allergic rhinitis (AR) and asthma. This review provides an overview of the current evidence-based studies that address the use of SLIT for treating AR, including (1) mechanisms of action, (2) appropriate patient selection for SLIT, (3) the current available SLIT products in Korea, and (4) updated information on its efficacy and safety. Finally, this guideline aims to provide the clinician with practical considerations for SLIT.
9.The Korean Academy of Asthma Allergy and Clinical Immunology guidelines for allergen immunotherapy
Hwa Young LEE ; Sung-Yoon KANG ; Kyunghoon KIM ; Ju Hee KIM ; Gwanghui RYU ; Jin-Young MIN ; Kyung Hee PARK ; So-Young PARK ; Myongsoon SUNG ; Youngsoo LEE ; Eun-Ae YANG ; Hye Mi JEE ; Eun Kyo HA ; Yoo Seob SHIN ; Sang Min LEE ; Eun Hee CHUNG ; Sun Hee CHOI ; Young-Il KOH ; Seon Tae KIM ; Dong-Ho NAHM ; Jung Won PARK ; Jung Yeon SHIM ; Young Min AN ; Doo Hee HAN ; Man Yong HAN ; Yong Won LEE ; Jeong-Hee CHOI ;
Allergy, Asthma & Respiratory Disease 2024;12(3):102-124
Allergen immunotherapy (AIT) is a causative treatment of allergic diseases in which allergen extracts are regularly administered in a gradually escalated doses, leading to immune tolerance and consequent alleviation of allergic diseases. The need for uniform practice guidelines in AIT is continuously growing as the number of potential candidates for AIT increases and new therapeutic approaches are tried. This updated version of the Korean Academy of Asthma Allergy and Clinical Immunology recommendations for AIT, published in 2010, proposes an expert opinion by specialists in allergy, pediatrics, and otorhinolaryngology. This guideline deals with the basic knowledge of AIT, including mechanisms, clinical efficacy, allergen standardization, important allergens in Korea, and special consideration in pediatrics. The article also covers the methodological aspects of AIT, including patient selection, allergen selection, schedule and doses, follow-up care, efficacy measurements, and management of adverse reactions. Although this guideline suggests the optimal dosing schedule, an individualized approach and modifications are recommended considering the situation for each patient and clinic.
10.Brain Frailty and Outcomes of Acute Minor Ischemic Stroke With Large-Vessel Occlusion
Je-Woo PARK ; Joon-Tae KIM ; Ji Sung LEE ; Beom Joon KIM ; Joonsang YOO ; Jung Hoon HAN ; Bum Joon KIM ; Chi Kyung KIM ; Jae Guk KIM ; Sung Hyun BAIK ; Jong-Moo PARK ; Kyusik KANG ; Soo Joo LEE ; Hyungjong PARK ; Jae-Kwan CHA ; Tai Hwan PARK ; Kyungbok LEE ; Jun LEE ; Keun-Sik HONG ; Byung-Chul LEE ; Dong-Eog KIM ; Jay Chol CHOI ; Jee-Hyun KWON ; Dong-Ick SHIN ; Sung Il SOHN ; Sang-Hwa LEE ; Wi-Sun RYU ; Juneyoung LEE ; Hee-Joon BAE
Journal of Clinical Neurology 2024;20(2):175-185
Background:
and Purpose The influence of imaging features of brain frailty on outcomes were investigated in acute ischemic stroke patients with minor symptoms and large-vessel occlusion (LVO).
Methods:
This was a retrospective analysis of a prospective, multicenter, nationwide registry of consecutive patients with acute (within 24 h) minor (National Institutes of Health Stroke Scale score=0–5) ischemic stroke with anterior circulation LVO (acute minor LVO). Brain frailty was stratified according to the presence of an advanced white-matter hyperintensity (WMH) (Fazekas grade 2 or 3), silent/old brain infarct, or cerebral microbleeds. The primary outcome was a composite of stroke, myocardial infarction, and all-cause mortality within 1 year.
Results:
In total, 1,067 patients (age=67.2±13.1 years [mean±SD], 61.3% males) were analyzed. The proportions of patients according to the numbers of brain frailty burdens were as follows: no burden in 49.2%, one burden in 30.0%, two burdens in 17.3%, and three burdens in 3.5%. In the Cox proportional-hazards analysis, the presence of more brain frailty burdens was associated with a higher risk of 1-year primary outcomes, but after adjusting for clinically relevant variables there were no significant associations between burdens of brain frailty and 1-year vascular outcomes. For individual components of brain frailty, an advanced WMH was independently associated with an increased risk of 1-year primary outcomes (adjusted hazard ratio [aHR]=1.33, 95% confidence interval [CI]=1.03–1.71) and stroke (aHR=1.32, 95% CI=1.00–1.75).
Conclusions
The baseline imaging markers of brain frailty were common in acute minor ischemic stroke patients with LVO. An advanced WMH was the only frailty marker associated with an increased risk of vascular events. Further research is needed into the association between brain frailty and prognosis in patients with acute minor LVO.

Result Analysis
Print
Save
E-mail