1.Network Pharmacology and in vitro Experimental Verification on Intervention of Oridonin on Non-Small Cell Lung Cancer.
Ke CHANG ; Li-Fei ZHU ; Ting-Ting WU ; Si-Qi ZHANG ; Zi-Cheng YU
Chinese journal of integrative medicine 2025;31(4):347-356
OBJECTIVE:
To explore the key target molecules and potential mechanisms of oridonin against non-small cell lung cancer (NSCLC).
METHODS:
The target molecules of oridonin were retrieved from SEA, STITCH, SuperPred and TargetPred databases; target genes associated with the treatment of NSCLC were retrieved from GeneCards, DisGeNET and TTD databases. Then, the overlapping target molecules between the drug and the disease were identified. The protein-protein interaction (PPI) was constructed using the STRING database according to overlapping targets, and Cytoscape was used to screen for key targets. Molecular docking verification were performed using AutoDockTools and PyMOL software. Using the DAVID database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. The impact of oridonin on the proliferation and apoptosis of NSCLC cells was assessed using cell counting kit-8, cell proliferation EdU image kit, and Annexin V-FITC/PI apoptosis kit respectively. Moreover, real-time quantitative PCR and Western blot were used to verify the potential mechanisms.
RESULTS:
Fifty-six target molecules and 12 key target molecules of oridonin involved in NSCLC treatment were identified, including tumor protein 53 (TP53), Caspase-3, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase kinase 8 (MAPK8), and mammalian target of rapamycin (mTOR). Molecular docking showed that oridonin and its key target molecules bind spontaneously. GO and KEGG enrichment analyses revealed cancer, apoptosis, phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), and other signaling pathways. In vitro experiments showed that oridonin inhibited the proliferation, induced apoptosis, downregulated the expression of Bcl-2 and Akt, and upregulated the expression of Caspase-3.
CONCLUSION
Oridonin can act on multiple targets and pathways to exert its inhibitory effects on NSCLC, and its mechanism may be related to upregulating the expression of Caspase-3 and downregulating the expressions of Akt and Bcl-2.
Diterpenes, Kaurane/chemistry*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Humans
;
Network Pharmacology
;
Lung Neoplasms/pathology*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Cell Line, Tumor
;
Signal Transduction/drug effects*
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Reproducibility of Results
;
Gene Ontology
2.Ent-pimarane and ent-kaurane diterpenoids from Siegesbeckiapubescens and their anti-endothelial damage effect in diabetic retinopathy.
Mengjia LIU ; Tingting LUO ; Rongxian LI ; Wenying YIN ; Fengying YANG ; Di GE ; Na LIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):234-244
Diabetic retinopathy, a prevalent and vision-threatening microvascular complication of diabetes mellitus, is the leading cause of blindness among middle-aged and elderly individuals. Natural diterpenoids isolated from Siegesbeckia pubescens demonstrate potent anti-inflammatory properties. This study aimed to identify novel bioactive diterpenoids from S. pubescens and investigate their effects on oxidative stress and inflammatory responses in diabetic retinopathy, both in vitro and in vivo. Three new ent-pimarane-type diterpenoids (1-3) and six known compounds (4-9) were isolated from the aerial parts of S. pubescens. Their structures were elucidated through spectroscopic data interpretation, and absolute configurations were determined by comparing calculated and experimental electronic circular dichroism (ECD) spectra. Among these compounds, 14β,16-epoxy-ent-3β,15α,19-trihydroxypimar-7-ene (5) exhibited the most potent protective effect against high glucose and interleukin-1β (IL-1β)-stimulated human retinal endothelial cells. Mechanistically, compound 5 promoted endothelial cell survival while ameliorating oxidative stress and inflammatory response in diabetic retinopathy, both in vivo and in vitro. These findings not only suggest that diterpenoids such as compound 5 are important anti-inflammatory constituents in S. pubescens, but also indicate that compound 5 may serve as a lead compound for preventing or treating vascular complications associated with diabetic retinopathy.
Diabetic Retinopathy/metabolism*
;
Humans
;
Oxidative Stress/drug effects*
;
Animals
;
Diterpenes, Kaurane/administration & dosage*
;
Asteraceae/chemistry*
;
Male
;
Endothelial Cells/drug effects*
;
Abietanes/administration & dosage*
;
Molecular Structure
;
Mice
;
Anti-Inflammatory Agents/chemistry*
;
Plant Extracts/chemistry*
;
Mice, Inbred C57BL
3.Site-directed mutagenesis of ent-kaurane diterpenoid C-19 oxidase TwKO in Tripterygium wilfordii.
Rong-Feng WANG ; Zheng LIU ; Xin-Meng WANG ; Wei GAO ; Jia-Dian WANG ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2024;49(24):6667-6675
Tripterifordin and neotripterifordin are important ent-kaurane diterpenoids in the Chinese medicinal herb Tripterygium wilfordii, possessing significant anti-HIV(human immunodeficiency virus) activity. On the basis of elucidating the natural biosynthetic pathways of these compounds, heterologous production with microbial cell factories can help to alleviate the reliance on plant resources and provide abundant raw materials for sustainable production. TwKO is the first CYP450 enzyme involved in the biosynthesis of tripterifordin and neotripterifordin. This study aimed to enhance the catalytic activity of TwKO by site-directed mutagenesis to benefit the production of tripterifordin and neotripterifordin in yeast. The AlphaFold DB established based on the AlphaFold 2 was employed to obtain the protein model of TwKO. According to multiple sequence alignments and principles of natural evolution, the key residues influencing the binding of TwKO to the substrate were identified. Subsequently, functional characterization of the mutants were conducted in Saccharomyces cerevisiae. A total of 71 mutants were obtained, among which 11 and 11 mutants had the abilities of enhancing the production of 16α-hydroxy-ent-kaurenol and 16α-hydroxy-ent-kaurenoic acid, respectively. In addition, 10 mutants could increase the proportion of the oxidation product of 16α-hydroxy-ent-kaurenol. In particular, R304 was identified as a key residue affecting the catalytic specificity of TwKO, the mutation of which led to the specific prodiction of 16α-hydroxy-ent-kaurenol. This study was the first to reveal the key residue affecting the catalytic activity of TwKO and obtained the mutants with increased TwKO activity, lay a foundation for the biosynthesis of tripterifordin and neotripterifordin.
Tripterygium/chemistry*
;
Mutagenesis, Site-Directed
;
Diterpenes, Kaurane/chemistry*
;
Plant Proteins/chemistry*
;
Cytochrome P-450 Enzyme System/chemistry*
;
Saccharomyces cerevisiae/metabolism*
4.Diterpenoids from Rabdosia flexicaulis.
Xu LIU ; Chun-Xia CHEN ; Ji-Zhou WU
China Journal of Chinese Materia Medica 2022;47(2):433-436
The genus Rabdosia is famous for the abundance of diverse and novel ent-kaurane diterpenoids. However, only a few ent-kauranoids have been discovered from R. flexicaulis since the investigation on its chemical constituents is not systematic. To find novel bioactive diterpenoids, the ethyl acetate extract of the above ground part of R. flexicaulis in Daofu County, Sichuan Province was obtained by column chromatography. One new compound and five known ones were identified as flexicaulin E(1), forrestin B(2), inf-lexarabdonin D(3), 7α-hydroxydehydroabietic acid(4), 15-hydroxydehydroabietic acid(5), and pomiferin F(6) by spectral techniques. Compounds 1-3 were the ent-kaurane diterpenoids isolated from this species for the first time. Compounds 4-6, aromatic abie-tanoids, were isolated from the genus Rabdosia for the first time.
Diterpenes
;
Diterpenes, Kaurane
;
Isodon/chemistry*
;
Molecular Structure
;
Plant Extracts/chemistry*
5.Scopariusols L-T, nine new ent-kaurane diterpenoids isolated from Isodon scoparius.
Hua-Yi JIANG ; Xiao-Nian LI ; Han-Dong SUN ; Hong-Bin ZHANG ; Pema-Tenzin PUNO
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):456-464
Nine new ent-kaurane diterpenoids, named scopariusols L-T (1-9), were isolated from the aerial parts of Isodon scoparius. Their structures were characterized mainly by analyzing the NMR and HR-ESI-MS data, and the absolute configuration of 1 was determined by single-crystal X-ray diffraction. Compound 1 was active against five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480), and it also inhibited NO production in LPS-stimulated RAW264.7 cells, with an IC value of 0.6 μmol·L.
Animals
;
Antineoplastic Agents, Phytogenic
;
chemistry
;
isolation & purification
;
pharmacology
;
Cell Line, Tumor
;
Crystallography, X-Ray
;
Diterpenes, Kaurane
;
chemistry
;
isolation & purification
;
pharmacology
;
Drug Screening Assays, Antitumor
;
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
pharmacology
;
HL-60 Cells
;
Humans
;
Isodon
;
chemistry
;
Lipopolysaccharides
;
pharmacology
;
Macrophages
;
drug effects
;
Mice
;
Molecular Structure
;
Nitric Oxide
;
biosynthesis
;
Nuclear Magnetic Resonance, Biomolecular
;
Plant Components, Aerial
;
chemistry
;
RAW 264.7 Cells
6.Six new cytotoxic and anti-inflammatory 11, 20-epoxy-ent-kaurane diterpenoids from Isodon wikstroemioides.
Hai-Yan WU ; Wei-Guang WANG ; Xue DU ; Jin YANG ; Jian-Xin PU ; Han-Dong SUN
Chinese Journal of Natural Medicines (English Ed.) 2015;13(5):383-389
The present study was designed to determine the chemical constituents of EtOAc extracts of the aerial parts of Isodon wikstroemioides. Compounds 1-8 were isolated and purified by normal-phase silica gel and reversed-phase C18silica gel column chromatography and HPLC. Their structures were elucidated by extensive spectroscopic methods. Most of them were evaluated for their in vitro cytotoxicity against human cancer HL-60, SMMC-7721, A-549, MCF-7, and SW-480 cells and their inhibitory activity against nitric oxide (NO) production in LPS-activated RAW264.7 macrophages. Among the eight 11, 20-epoxy-ent-kauranoids isolated, compounds 1-6 (isowikstroemins H-M) were new diterpenoids. Compounds 1, 3, and 7 exhibited significant cytotoxicity with IC50 values ranging from (0.84 ± 0.02) to (4.09 ± 0.34) μmol · L(-1), while compounds 4 and 5 showed selective cytotoxicity. In addition, compounds 1, 3, 4, and 7 exhibited inhibitory activity against nitric oxide (NO) production in LPS-activated RAW264.7 macrophages. These results provide a basis for future development of these compounds as anti-cancer and anti-inflammatory agents.
Anti-Inflammatory Agents
;
isolation & purification
;
Antineoplastic Agents, Phytogenic
;
isolation & purification
;
Cell Line, Tumor
;
Diterpenes, Kaurane
;
isolation & purification
;
Humans
;
Inhibitory Concentration 50
;
Isodon
;
chemistry
;
Lipopolysaccharides
;
pharmacology
;
Macrophages
;
drug effects
;
metabolism
;
Neoplasms
;
drug therapy
;
Nitric Oxide
;
antagonists & inhibitors
;
biosynthesis
;
Phytotherapy
;
Plant Components, Aerial
;
Plant Extracts
;
isolation & purification
7.Recent advances in the molecular basis of anti-neoplastic mechanisms of oridonin.
Chinese journal of integrative medicine 2013;19(4):315-320
Oridonin, a diterpenoid isolated from Rabdosia rubescens, has been proven to possess various pharmacological and physiological effects such as anti-inflammation, anti-bacterial, and anti-neoplastic, although in recent years, more attention has been paid to its anti-neoplastic effects. For example, oridonin can trigger cell cycle arrest, apoptosis, and autophagy in different neoplastic cell lines. This review summarizes the considerable knowledge about the action mechanisms of oridonin that has been studied in recent years. The present observations reveal the novel anti-neoplastic effects of oridonin, suggesting that it may be effective as a potent alternative or adjunct drug to conventional chemotherapy.
Animals
;
Antineoplastic Agents
;
adverse effects
;
chemistry
;
pharmacology
;
therapeutic use
;
Apoptosis
;
drug effects
;
Cell Cycle
;
drug effects
;
Diterpenes, Kaurane
;
adverse effects
;
chemistry
;
pharmacology
;
therapeutic use
;
Humans
;
Neoplasms
;
drug therapy
;
pathology
;
Signal Transduction
;
drug effects
8.Simultaneous determination of rosmarinic acid, oridonin and chrysoplenetin in Isodon rubescens by HPLC.
Xing-Li YUAN ; Li-Hua YAN ; Qi-Wei ZHANG ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2013;38(14):2343-2347
An HPLC method was developed for simultaneous quantitation of rosmarinic acid, oridonin and chrysoplenetin in the aerial parts of Isodon rubescens. Samples were analyzed on an Ultimate C18 column (4.6 mm x 250 mm, 5 microm) with methanol and water containing 0.1% formic acid as mobile phases in a linear gradient mode. The flow rate was 1.0 mL x min(-1) and the temperature was set at 30 degrees C. The PDA detector wavelengths were set at 338 nm for rosmarinic and chrysoplenetin and at 242 nm for oridonin. The linear ranges were 0.222-2.78, 0.227-2.84 and 0.005-0.071 microg for rosmarinic acid, oridonin and chrysoplenetin, respectively. The average recoveries of the three constituents were 102.9% (RSD 1.9%), 99.6% (RSD 1.1%) and 102.5% (RSD 0.94%), respectively. This method was proved to be accurate and repeatable, and can be used for quality control of the aerial parts of I. rubescens.
Chromatography, High Pressure Liquid
;
methods
;
Cinnamates
;
analysis
;
Depsides
;
analysis
;
Diterpenes, Kaurane
;
analysis
;
Drugs, Chinese Herbal
;
analysis
;
Flavonoids
;
analysis
;
Isodon
;
chemistry
;
Plant Extracts
;
analysis
;
Plants, Medicinal
;
chemistry
9.Glycosylation of ent-kaurene derivatives and an evaluation of their cytotoxic activities.
Min ZOU ; Shuang-Shuang YU ; Ke WANG ; Da-Yong ZHANG ; Xiao-Ming WU ; Wei-Yi HUA
Chinese Journal of Natural Medicines (English Ed.) 2013;11(3):289-295
AIM:
To discover more active and water-soluble derivatives of tetracyclic diterpenoids containing an exo-methylene cyclopentanone or an α-methylenelactone moiety.
METHODS:
All of the key intermediates were synthesized from stevioside, and the target compounds were obtained through glycosylation of the 4-carboxyl group. The cytotoxicity of the target compounds against six human cancer cell lines, HepG2, Bel-7402, A549, U251, MCF-7 and MDA-MB-231, were evaluated by the MTT assay.
RESULTS:
Compound 1b was more effective than the positive control adriamycin against the HepG2, Bel-7402, A549, MCF-7, and MDA-MB-231 cell lines with IC50 values of 0.12, 0.91, 0.35, 0.08, and 0.07 μmol·L(-1), respectively. Moreover, compound 3c exhibited the most potent and selective cytotoxic activity against the HepG2 cell line (IC50, 0.01 μmol·L(-1)).
CONCLUSION
Compounds 1b and 3c could be considered as potential anticancer candidates for further study.
Antineoplastic Agents
;
chemistry
;
toxicity
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Diterpenes, Kaurane
;
chemistry
;
toxicity
;
Drug Evaluation, Preclinical
;
Glycosylation
;
Humans
;
Molecular Structure
10.Study on stability of oridonin solution.
Jie XU ; Jihui ZHAO ; Ju WANG ; Nianping FENG ; Rong TAN ; Ying LIU
China Journal of Chinese Materia Medica 2009;34(1):47-49
OBJECTIVETo investigate the stability of oridonin (ORI) solution for research and development of novel ORI prepartions.
METHODThe effect of pH on the degradation rate of ORI was evaluated, the pH values of the oridonin solutions were adjusted to the setting pH, with 1 mol x L(-1) HCl or NaOH, respectively, and stored at room temperature for 60 h. The constant temperature method was applied to evaluate the stability of ORI solution at room temperature and at 4 degrees C.
RESULTThe pH-rate profile of ORI was V-shaped, and the pHm was 5. The t90 of ORI solution at room temperature was 53.2 h and 91.5 h at 4 degrees C CONCLUSION: The ORI solution is not stable. The pH-dependent degradation of ORI solution confirms to specific acid-base catalysis reaction.
Diterpenes, Kaurane ; chemistry ; Drug Stability ; Hydrogen-Ion Concentration ; Solubility ; Solutions ; Temperature ; Time Factors ; Water ; chemistry

Result Analysis
Print
Save
E-mail