1.Silencing GmWRKY33B genes leads to reduced disease resistance in soybean.
Chenli ZHONG ; Wenxu WANG ; Lina LIAO ; Jianzhong LIU
Chinese Journal of Biotechnology 2024;40(1):163-176
The WRKYs are a group of plant-specific transcription factors that play important roles in defense responses. In this study, we silenced 2 GmWRKY33B homologous genes using a bean pod mosaic virus (BPMV) vector carrying a single fragment from the conserved region of the GmWRKY33B genes. Silencing GmWRKY33B did not result in morphological changes. However, significantly reduced resistances to Pseudomonas syringae pv. glycinea (Psg) and soybean mosaic virus (SMV) were observed in the GmWRKY33B-silenced plants, indicating a positive role of the GmWRKY33B genes in disease resistance. Kinase assay showed that silencing the GmWRKY33B genes significantly reduced the activation of GmMPK6, but not GmMPK3, in response to flg22 treatment. Reverse transcriptase PCR (RT-PCR) analysis of the genes encoding prenyltransferases (PTs), which are the key enzymes in the biosynthesis of glyceollin, showed that the Psg-induced expression of these genes was significantly reduced in the GmWRKY33B-silenced plants compared with the BPMV-0 empty vector plants, which correlated with the presence of the W-boxes in the promoter regions of these genes. Taken together, our results suggest that GmWRKY33Bs are involved in soybean immunity through regulating the activation of the kinase activity of GmMPK6 as well as through regulating the expression of the key genes encoding the biosynthesis of glyceollins.
Glycine max/genetics*
;
Disease Resistance/genetics*
;
Biological Assay
;
Dimethylallyltranstransferase
;
Gene Silencing
2.Incidence and related factors of antiviral drug resistance in HIV-infected pregnant and postpartum women in some areas of three western provinces of China from 2017 to 2019.
He SUN ; Ai Ling WANG ; Jun YAO ; Jia Rui ZHENG ; Qing Hua QIN ; Wu Li SHA ; Xiao Yan WANG ; Ya GAO ; Zhen LI ; Dong Xu HUANG ; Qian WANG
Chinese Journal of Preventive Medicine 2023;57(11):1788-1793
Objective: To analyze the incidence and related factors of drug resistance in HIV-infected pregnant and postpartum women in some areas of three western provinces of China from 2017 to 2019. Methods: From April 2017 to April 2019, face-to-face questionnaires and blood sample testing were conducted in all health care institutions providing maternal and perinatal care and midwifery-assisted services in 7 prevention of mother-to-child transmissi project areas in Xinjiang, Yunnan and Guangxi provinces/autonomous regions. Information was collected during the perinatal period and viral load, CD4+T lymphocytes and drug resistance genes were detected at the same time. The multivariate logistic regression model was used to analyze the relationship between different factors and drug resistance in HIV-infected pregnant and postpartum women. Results: A total of 655 HIV-infected pregnant and postpartum women were included in this study. The incidence of drug resistance was 3.4% (22/655), all of whom were cross-drug resistant. The rate of low, moderate and high drug resistance was 2.1% (14/655), 1.2% (8/655) and 0.8% (5/655), respectively. The drug resistance rate in the people who had previously used antiviral drugs was 1.9% (8/418), and the drug resistance rate in the people who had not used drugs was 5.9% (14/237). The NNRTI drug resistance accounted for 2.8% (18/655) and the NRTI drug resistance rate was 2.5% (16/655). The multivariate logistic regression model showed that the risk of HIV resistance was lower in pregnant women who had previously used antiviral drugs (OR=0.32, 95%CI: 0.11-0.76). Conclusion: Strengthening the management of antiviral drug use and focusing on pregnant and postpartum women who have not previously used antiviral drugs can help reduce the occurrence of drug-resistant mutations. Personalized antiviral therapy should be considered to achieve viral inhibition effects in clinical practice.
Female
;
Humans
;
Pregnancy
;
HIV Infections/drug therapy*
;
Incidence
;
China/epidemiology*
;
Infectious Disease Transmission, Vertical/prevention & control*
;
Postpartum Period
;
Drug Resistance, Viral/genetics*
;
Antiviral Agents/therapeutic use*
3.Incidence and related factors of antiviral drug resistance in HIV-infected pregnant and postpartum women in some areas of three western provinces of China from 2017 to 2019.
He SUN ; Ai Ling WANG ; Jun YAO ; Jia Rui ZHENG ; Qing Hua QIN ; Wu Li SHA ; Xiao Yan WANG ; Ya GAO ; Zhen LI ; Dong Xu HUANG ; Qian WANG
Chinese Journal of Preventive Medicine 2023;57(11):1788-1793
Objective: To analyze the incidence and related factors of drug resistance in HIV-infected pregnant and postpartum women in some areas of three western provinces of China from 2017 to 2019. Methods: From April 2017 to April 2019, face-to-face questionnaires and blood sample testing were conducted in all health care institutions providing maternal and perinatal care and midwifery-assisted services in 7 prevention of mother-to-child transmissi project areas in Xinjiang, Yunnan and Guangxi provinces/autonomous regions. Information was collected during the perinatal period and viral load, CD4+T lymphocytes and drug resistance genes were detected at the same time. The multivariate logistic regression model was used to analyze the relationship between different factors and drug resistance in HIV-infected pregnant and postpartum women. Results: A total of 655 HIV-infected pregnant and postpartum women were included in this study. The incidence of drug resistance was 3.4% (22/655), all of whom were cross-drug resistant. The rate of low, moderate and high drug resistance was 2.1% (14/655), 1.2% (8/655) and 0.8% (5/655), respectively. The drug resistance rate in the people who had previously used antiviral drugs was 1.9% (8/418), and the drug resistance rate in the people who had not used drugs was 5.9% (14/237). The NNRTI drug resistance accounted for 2.8% (18/655) and the NRTI drug resistance rate was 2.5% (16/655). The multivariate logistic regression model showed that the risk of HIV resistance was lower in pregnant women who had previously used antiviral drugs (OR=0.32, 95%CI: 0.11-0.76). Conclusion: Strengthening the management of antiviral drug use and focusing on pregnant and postpartum women who have not previously used antiviral drugs can help reduce the occurrence of drug-resistant mutations. Personalized antiviral therapy should be considered to achieve viral inhibition effects in clinical practice.
Female
;
Humans
;
Pregnancy
;
HIV Infections/drug therapy*
;
Incidence
;
China/epidemiology*
;
Infectious Disease Transmission, Vertical/prevention & control*
;
Postpartum Period
;
Drug Resistance, Viral/genetics*
;
Antiviral Agents/therapeutic use*
4.Advances of miRNA-mediated regulatory roles in plant-microbe interaction.
Xiaoman LÜ ; Wenyi ZHANG ; Haihua ZHANG ; Zongsuo LIANG ; Haimin CHEN
Chinese Journal of Biotechnology 2022;38(5):1695-1705
There are many bidirectional communication and crosstalk between microbes and host plants. The plant-pathogen interaction directly affects the survival of host plants, while the interaction between plants and their probiotics benefits both. Plant miRNA responds quickly to pathogenic or beneficial microbes when they enter the plant tissues, while microbes also produce miRNA-like RNA (milRNA) to affect plant health. These means miRNA or milRNA is an important fast-responding molecular mediator in plant-microbe interactions, and these internal mechanisms have been better understood in recent years. This review summarized the regulatory roles of miRNA in plant-pathogens and plant-probiotics interaction. The regulatory role of miRNA in disease resistance of host plants during plant-pathogens interaction, and the regulatory role of miRNA in promoting host growth and development during plant-probiotics interaction, as well as the cross-kingdom regulatory role of milRNA in host plants, were discussed in-depth.
Disease Resistance
;
MicroRNAs/genetics*
;
Microbial Interactions
;
Plants/genetics*
5.Chinese Medicine in Fighting against Covid-19: Role and Inspiration.
Chinese journal of integrative medicine 2021;27(1):3-6
Covid-19 pandemic has caused hundreds of thousands deaths and millions of infections and continued spreading violently. Although researchers are racing to find or develop effective drugs or vaccines, no drugs from modern medical system have been proven effective and the high mutant rates of the virus may lead it resistant to whatever drugs or vaccines developed following modern drug development procedure. Current evidence has demonstrated impressive healing effects of several Chinese medicines (CMs) for Covid-19, which urges us to reflect on the role of CM in the era of modern medicine. Undoubtedly, CM could be promising resources for developing drug candidates for the treatment of Covid-19 in a way similar to the development of artemisinin. But the theory that builds CM, like the emphasis of driving away exogenous pathogen (virus, etc.) by restoring self-healing capacity rather than killing the pathogen directly from the inside and the 'black-box' mode of diagnosing and treating patients, is as important, yet often ignored, an treasure as CM herbs and should be incorporated into modern medicine for future advancement and innovation of medical science.
Antiviral Agents/therapeutic use*
;
COVID-19/therapy*
;
Disease Outbreaks
;
Drug Development/standards*
;
Drug Resistance, Viral/genetics*
;
Drug Therapy, Combination
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Medicine, Chinese Traditional/trends*
;
Mutation Rate
;
Pandemics
;
Phytotherapy/methods*
;
SARS-CoV-2/physiology*
6.Cholera: an overview with reference to the Yemen epidemic.
Frontiers of Medicine 2019;13(2):213-228
Cholera is a secretory diarrhoeal disease caused by infection with Vibrio cholerae, primarily the V. cholerae O1 El Tor biotype. There are approximately 2.9 million cases in 69 endemic countries annually, resulting in 95 000 deaths. Cholera is associated with poor infrastructure and lack of access to sanitation and clean drinking water. The current cholera epidemic in Yemen, linked to spread of V. cholerae O1 (Ogawa serotype), is associated with the ongoing war. This has devastated infrastructure and health services. The World Health Organization had estimated that 172 286 suspected cases arose between 27th April and 19th June 2017, including 1170 deaths. While there are three oral cholera vaccines prequalified by the World Health Organization, there are issues surrounding vaccination campaigns in conflict situations, exacerbated by external factors such as a global vaccine shortage. Major movements of people complicates surveillance and administration of double doses of vaccines. Cholera therapy mainly depends on rehydration, with use of antibiotics in more severe infections. Concerns have arisen about the rise of antibiotic resistance in cholera, due to mobile genetic elements. In this review, we give an overview of cholera epidemiology, virulence, antibiotic resistance, therapy and vaccines, in the light of the ongoing epidemic in Yemen.
Anti-Bacterial Agents
;
therapeutic use
;
Cholera
;
drug therapy
;
prevention & control
;
Cholera Vaccines
;
therapeutic use
;
DNA, Bacterial
;
genetics
;
Disease Outbreaks
;
Drug Resistance, Multiple, Bacterial
;
Humans
;
Microbial Sensitivity Tests
;
Polymerase Chain Reaction
;
Vibrio cholerae
;
drug effects
;
isolation & purification
;
Virulence Factors
;
genetics
;
Yemen
7.Pyramiding of 3-resistant-gene to improve rice blast resistance of a restorer line, Fuhui 673.
Zhiwei CHEN ; Huazhong GUAN ; Xiaofang WANG ; Ruixia DONG ; Chenghai ZHUO ; Damei MAO ; Runsen PAN ; Yuanchang ZHOU ; Weiren WU
Chinese Journal of Biotechnology 2019;35(5):837-846
To improve the blast resistance of elite rice restorer line Fuhui 673, 3 blast resistance genes Pi-1, Pi-9 and Pi-kh were introduced into Fuhui 673 from a good-quality restorer line Jinhui 1059 through 3 successive backcrosses followed by one selfing using the technique of marker-assisted selection. Ten near-isogenic lines (NILs) of Fuhui 673 carrying the 3 introduced resistance genes were created. Genotype analysis using 68 SSR markers evenly distributed in the genome indicated that 92.96%-98.59% of the NILs' genetic background had been recovered to Fuhui 673. Both indoor and field resistance tests indicated that the NILs and their hybrids with sterile line Yixiang A were all resistant to rice blast, with resistance levels significantly higher than those of controls Fuhui 673 and hybrid Yiyou 673 (Yixiang A Fuhui 673). In addition, among the 10 hybrids between the NILs and Yixiang A, 2 showed significantly higher yield than and 4 displayed similar yield to that of control Yiyou 673, suggesting that most of the NILs retained the elite characteristics of Fuhui 673. Two new hybrid rice cultivars Liangyou 7283 and Jintaiyou 683 from NIL Line 9 showed high yield, good resistance to blast and moderate growth period in regional trial, suggesting that the NIL Line 9 has a good prospect for application.
Breeding
;
Disease Resistance
;
genetics
;
Genes, Plant
;
genetics
;
Oryza
;
genetics
8.Molecular Mechanism and Progression of Primary Resistance to EGFR-TKI - Analysis of 2 Cases.
Meirong LIU ; Fanlu MENG ; Qing MA ; Liyan GU ; Diansheng ZHONG
Chinese Journal of Lung Cancer 2019;22(1):52-56
Tyrosine kinase inhibitor (TKI) have been proved to be effective in the treatment of advanced non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) sensitive mutation, which is superior to chemotherapy. However, there are still some patients with sensitive mutations have primary drug resistance. It may be related to the coexistence of susceptible and resistant mutations of EGFR gene, downstream mutations of EGFR pathway, MET amplification and BIM deletion polymorphism. We present 2 cases of primary drug resistance and analyze the reasons.
.
Carcinoma, Non-Small-Cell Lung
;
diagnostic imaging
;
drug therapy
;
genetics
;
Disease Progression
;
Drug Resistance, Neoplasm
;
drug effects
;
genetics
;
ErbB Receptors
;
antagonists & inhibitors
;
genetics
;
Fatal Outcome
;
Humans
;
Lung Neoplasms
;
diagnostic imaging
;
drug therapy
;
genetics
;
Male
;
Middle Aged
;
Mutation
;
Protein Kinase Inhibitors
;
therapeutic use
;
Treatment Outcome
9.Establishment of A Patient-derived Xenotransplantation Animal Model for Small Cell Lung Cancer and Drug Resistance Model.
Yaru ZHU ; Weimei HUANG ; Yuanzhou WU ; Longfei JIA ; Yaling LI ; Rui CHEN ; Linlang GUO ; Qunqing CHEN
Chinese Journal of Lung Cancer 2019;22(1):6-14
BACKGROUND:
Small cell lung cancer (SCLC) is characterized by poor differentiation, high malignancy and rapid growth fast, short double time, early and extensive metastatic malignancy. In clinical, chemotherapy is the main treatment method, while resistance to multiple chemotherapy drugs in six to nine months has been a major clinical challenge in SCLC treatment. Therefore, It has important clinical value to building SCLC aninimal model which is similar to patients with SCLC. Animal model of xenotransplantation (PDX) from the patients with small cell lung cancer can well retain the characteristics of primary tumor and is an ideal preclinical animal model. The study is aimed to establish SCLC PDX animal model and induce the chemoresistance model to help to study the mechanism of chemoresistance and individual treatment.
METHODS:
Fresh surgical excision or puncture specimens from SCLC patients were transplanted into B-NSGTM mice subcutaneous tissues with severe immunodeficiency in one hour after operation the B-NSGTM mice subcutaneous in 1 hour, and inject chemotherapy drugs intraperitoneally after its tumor growed to 400 mm³ with EP which is cisplatin 8 mg/kg eight days and etoposide 5 mg/kg every two days until 8 cycles. Measure the tumor volum and mice weights regularly, then re-engrafted the largest tumor and continue chemotherapy.
RESULTS:
Nine cases were conducted for B-NSG mice modeling. Three of nine cases could be engrafted to new B-NSG mice at least two generation. The SCLC PDX animal models have been established successfully. After adopting chemotherapy drugs, the chemoresistance PDX models have been established. High homogeneity was found between xenograft tumor and patient's tumor in histopathology, immunohistochemical phenotype (Syn, CD56, Ki67).
CONCLUSIONS
The SCLC PDX animal model and the chemoresistance PDX animal model have been successfully constructed, the success rate is 33%, which provides a platform for the clinical research, seeking for biological markers and choosing individual treatment methods of SCLC.
Animals
;
Antineoplastic Combined Chemotherapy Protocols
;
pharmacology
;
Cisplatin
;
administration & dosage
;
Disease Models, Animal
;
Drug Resistance, Neoplasm
;
Etoposide
;
administration & dosage
;
Female
;
Humans
;
Interleukin Receptor Common gamma Subunit
;
deficiency
;
genetics
;
Lung Neoplasms
;
drug therapy
;
metabolism
;
pathology
;
Mice, Inbred BALB C
;
Mice, Inbred NOD
;
Mice, Knockout
;
Mice, SCID
;
Small Cell Lung Carcinoma
;
drug therapy
;
metabolism
;
pathology
;
Transplantation, Heterologous
;
methods
;
Xenograft Model Antitumor Assays
10.Molecular and cytogenetic identification of Triticum aestivum-Leymus racemosus translocation line T6DL·7LrS.
Chinese Journal of Biotechnology 2018;34(11):1823-1830
Leymus racemosus had a high resistant capacity to wheat scab (Fusarum head blight). The transfer of scab resistant gene from L. racemosus to Triticum aestivum is of great significance for broadening the germplasm of wheat resistance. To obtain Triticum aestivum-Leymus racemosus translocation line with scab resistance, we irradiated the pollen of T. aestivum-L. racemosus disomic addition line DA7Lr by ⁶⁰Co-γ-rays 1 200 R (100 R/min) prior to pollinating to emasculation T. aestivum cv. Chinese Spring. One plant with one translocation chromosome was detected in the M1 by GISH. The plant with one translocation chromosome was self-pollinated, and at meiotic metaphase I its progenies with two translocation chromosomes were analyzed for chromosome pairing behavior in their pollen mother cells (PMCs). One rod bivalent was observed at meiotic metaphase I, indicating that the plant with two translocation chromosomes was one translocation homozygote. Sequential GISH-FISH analysis, using Oligo-pAs1-2 and Oligo-pSc119.2-2 as probe, translocation line was confirmed as T6DL·7LrS. The translocation line had higher resistance to wheat scab and feasibility to be used as a new source in wheat breeding resistant to scab disease.
Chromosomes, Plant
;
Disease Resistance
;
genetics
;
In Situ Hybridization, Fluorescence
;
Plant Breeding
;
Plant Diseases
;
genetics
;
Poaceae
;
genetics
;
Pollen
;
Translocation, Genetic
;
Triticum
;
genetics

Result Analysis
Print
Save
E-mail