1.A new cephalotaxine-type alkaloid dimer from Cephalotaxus lanceolata.
Jia-Yang MA ; Jing WANG ; Sha CHEN ; Chun-Lei YUAN ; Jin-Yuan YANG ; Da-Hong LI ; Hui-Ming HUA
China Journal of Chinese Materia Medica 2025;50(13):3729-3741
The chemical constituents from Cephalotaxus lanceolata were isolated and purified by using multiple chromatographic techniques, including octadecylsilane(ODS), silica gel, Sephadex LH-20 column chromatography, and semi-preparative high-performance liquid chromatography(HPLC). A total of 17 compounds obtained were identified by using spectroscopic methods such as nuclear magnetic resonance(NMR), mass spectrometry(MS), and ultraviolet(UV) combined with literature data. Compound 1 was a new alkaloid dimer, named cephalancetine E. The known compounds were determined as cephalancetine A(2), 11-hydroxycephalotaxine(3), 4-hydroxycephalotaxine(4), cephalotaxine(5), epicephalotaxine(6), cephalotaxine β-N-oxide(7), acetylcephalotaxine(8), cephalotine A(9), cephalotine B(10), 11-hydroxycephalotaxine hemiketal(11), 3-deoxy-3,11-epoxy-cephalotaxine(12), cephalotaxinone(13), isocephalotaxinone(14), 2,11-epoxy-1,2-dihydro-8-oxo-cephalotaxine(15), cephalotaxamide(16), and drupacine(17), respectively. Compounds 11, 12, and 15 were isolated from the Cephalotaxus genus for the first time. The biological activity was tested for compounds 1-17. The results reveal that compound 17 displays potent inhibitory activities against three human cancer cell lines(HepG-2, MCF-7, and SH-SY5Y).
Cephalotaxus/chemistry*
;
Humans
;
Cell Line, Tumor
;
Drugs, Chinese Herbal/pharmacology*
;
Harringtonines/pharmacology*
;
Molecular Structure
;
Dimerization
;
Alkaloids/isolation & purification*
;
Magnetic Resonance Spectroscopy
2.Cytotoxic anthrone-cyclopentenone heterodimers from the fungus Penicillium sp. guided by molecular networking.
Ruiyun HUO ; Jiayu DONG ; Gaoran LIU ; Ying SHI ; Ling LIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1259-1267
(±)-Penicithrones A-D (1a/1b-4a/4b), four novel pairs of anthrone-cyclopentenone heterodimers characterized by a distinctive bridged 6/6/6-5 tetracyclic core skeleton, together with three previously identified compounds (5-7), were isolated from the crude extract of the mangrove-derived fungus Penicillium sp., guided by heteronuclear single quantum correlation (HSQC)-based small molecule accurate recognition technology (SMART 2.0) and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based molecular networking. The structural elucidation of new compounds was accomplished through comprehensive spectroscopic analysis, and their absolute configurations were determined using DP4+ 13C nuclear magnetic resonance (NMR) calculations and electronic circular dichroism (ECD) calculations. Compounds 1a/1b-4a/4b demonstrated moderate cytotoxicity against three human cancer cell lines HeLa, HCT116 and MCF-7 with half maximal inhibitory concentration (IC50) values ranging from 15.95 ± 1.64 to 28.56 ± 2.59 μmol·L-1.
Humans
;
Penicillium/chemistry*
;
Molecular Structure
;
Cyclopentanes/isolation & purification*
;
Cell Line, Tumor
;
Antineoplastic Agents/pharmacology*
;
Tandem Mass Spectrometry
;
Dimerization
;
HeLa Cells
;
Magnetic Resonance Spectroscopy
3.AIFM1 variants associated with auditory neuropathy spectrum disorder cause apoptosis due to impaired apoptosis-inducing factor dimerization.
Yue QIU ; Hongyang WANG ; Huaye PAN ; Jing GUAN ; Lei YAN ; Mingjie FAN ; Hui ZHOU ; Xuanhao ZHOU ; Kaiwen WU ; Zexiao JIA ; Qianqian ZHUANG ; Zhaoying LEI ; Mengyao LI ; Xue DING ; Aifu LIN ; Yong FU ; Dong ZHANG ; Qiuju WANG ; Qingfeng YAN
Journal of Zhejiang University. Science. B 2023;24(2):172-184
Auditory neuropathy spectrum disorder (ANSD) represents a variety of sensorineural deafness conditions characterized by abnormal inner hair cells and/or auditory nerve function, but with the preservation of outer hair cell function. ANSD represents up to 15% of individuals with hearing impairments. Through mutation screening, bioinformatic analysis and expression studies, we have previously identified several apoptosis-inducing factor (AIF) mitochondria-associated 1 (AIFM1) variants in ANSD families and in some other sporadic cases. Here, to elucidate the pathogenic mechanisms underlying each AIFM1 variant, we generated AIF-null cells using the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and constructed AIF-wild type (WT) and AIF-mutant (mut) (p.T260A, p.R422W, and p.R451Q) stable transfection cell lines. We then analyzed AIF structure, coenzyme-binding affinity, apoptosis, and other aspects. Results revealed that these variants resulted in impaired dimerization, compromising AIF function. The reduction reaction of AIF variants had proceeded slower than that of AIF-WT. The average levels of AIF dimerization in AIF variant cells were only 34.5%‒49.7% of that of AIF-WT cells, resulting in caspase-independent apoptosis. The average percentage of apoptotic cells in the variants was 12.3%‒17.9%, which was significantly higher than that (6.9%‒7.4%) in controls. However, nicotinamide adenine dinucleotide (NADH) treatment promoted the reduction of apoptosis by rescuing AIF dimerization in AIF variant cells. Our findings show that the impairment of AIF dimerization by AIFM1 variants causes apoptosis contributing to ANSD, and introduce NADH as a potential drug for ANSD treatment. Our results help elucidate the mechanisms of ANSD and may lead to the provision of novel therapies.
Humans
;
Apoptosis Inducing Factor/metabolism*
;
NAD/metabolism*
;
Dimerization
;
Apoptosis
4.Dimerized, Not Monomeric, Translationally Controlled Tumor Protein Induces Basophil Activation and Mast Cell Degranulation in Chronic Urticaria
Bastsetseg ULAMBAYAR ; Heewon LEE ; Eun Mi YANG ; Hae Sim PARK ; Kyunglim LEE ; Young Min YE
Immune Network 2019;19(3):e20-
Translationally controlled tumor protein (TCTP) is also known as histamine releasing factor as it has the ability to activate mast cells. To investigate the role of TCTP in the pathogenesis of chronic spontaneous urticaria (CSU), we evaluated serum level of TCTP and effect of TCTP on basophil and mast cell degranulation. TCTP levels in the sera from 116 CSU patients and 70 normal healthy controls (NCs) were measured by ELISA. CD203c expression on basophils from CSU patients and β-hexosaminidase release from Laboratory of Allergic Disease 2 mast cells were measured upon stimulation monomeric and dimeric TCTP. Non-reducing Western blot analysis was used for detecting dimeric TCTP. No difference was observed in serum TCTP levels between CSU patients and NCs (p=0.676). However, dimeric TCTP intensity on Western blot was stronger in CSU patients than in NCs. TCTP levels were higher in patients with severe CSU (p=0.049) and with IgG positivity to FcɛRIα (p=0.038). A significant positive correlation was observed between TCTP and eosinophil cationic protein levels (Spearman's rho=0.341; p=0.001). Both basophil and mast cell degranulation were significantly increased after stimulation with dimeric TCTP, but not with monomic TCTP. The ability of TCTP to activate basophil and mast cells is dependent on dimerization, suggesting that the inhibition of TCTP dimerization can be a therapeutic option for CSU. Association between TCTP levels and the presence of IgG to high affinity Fc epsilon receptor I alpha subunit in CSU patients indicates that autoimmune mechanisms may be involved in the dimerization of TCTP.
Basophils
;
Blotting, Western
;
Dimerization
;
Enzyme-Linked Immunosorbent Assay
;
Eosinophil Cationic Protein
;
Histamine
;
Humans
;
Immunoglobulin G
;
Mast Cells
;
Urticaria
5.Development of a Molecular Marker Linked to the A4 Locus and the Structure of HD Genes in Pleurotus eryngii
Song Hee LEE ; Asjad ALI ; Byeongsuk HA ; Min Keun KIM ; Won Sik KONG ; Jae San RYU
Mycobiology 2019;47(2):200-206
Allelic differences in A and B mating-type loci are a prerequisite for the progression of mating in the genus Pleurotus eryngii; thus, the crossing is hampered by this biological barrier in inbreeding. Molecular markers linked to mating types of P. eryngii KNR2312 were investigated with randomly amplified polymorphic DNA to enhance crossing efficiency. An A4-linked sequence was identified and used to find the adjacent genomic region with the entire motif of the A locus from a contig sequenced by PacBio. The sequence-characterized amplified region marker 7-2299 distinguished A4 mating-type monokaryons from KNR2312 and other strains. A BLAST search of flanked sequences revealed that the A4 locus had a general feature consisting of the putative HD1 and HD2 genes. Both putative HD transcription factors contain a homeodomain sequence and a nuclear localization sequence; however, valid dimerization motifs were found only in the HD1 protein. The ACAAT motif, which was reported to have relevance to sex determination, was found in the intergenic region. The SCAR marker could be applicable in the classification of mating types in the P. eryngii breeding program, and the A4 locus could be the basis for a multi-allele detection marker.
Breeding
;
Cicatrix
;
Classification
;
Dimerization
;
DNA
;
DNA, Intergenic
;
Inbreeding
;
Pleurotus
;
Transcription Factors
6.Development of Inhibitors Targeting Hypoxia-Inducible Factor 1 and 2 for Cancer Therapy.
Tianchi YU ; Bo TANG ; Xueying SUN
Yonsei Medical Journal 2017;58(3):489-496
Hypoxia is frequently observed in solid tumors and also one of the major obstacles for effective cancer therapies. Cancer cells take advantage of their ability to adapt hypoxia to initiate a special transcriptional program that renders them more aggressive biological behaviors. Hypoxia-inducible factors (HIFs) are the key factors that control hypoxia-inducible pathways by regulating the expression of a vast array of genes involved in cancer progression and treatment resistance. HIFs, mainly HIF-1 and -2, have become potential targets for developing novel cancer therapeutics. This article reviews the updated information in tumor HIF pathways, particularly recent advances in the development of HIF inhibitors. These inhibitors interfere with mRNA expression, protein synthesis, protein degradation and dimerization, DNA binding and transcriptional activity of HIF-1 and -2, or both. Despite efforts in the past two decades, no agents directly inhibiting HIFs have been approved for treating cancer patients. By analyzing results of the published reports, we put the perspectives at the end of the article. The therapeutic efficacy of HIF inhibitors may be improved if more efforts are devoted on developing agents that are able to simultaneously target HIF-1 and -2, increasing the penetrating capacity of HIF inhibitors, and selecting suitable patient subpopulations for clinical trials.
Anoxia
;
Dimerization
;
DNA
;
Humans
;
Hypoxia-Inducible Factor 1*
;
Proteolysis
;
RNA, Messenger
7.Structural insights into the regulatory mechanism of the Pseudomonas aeruginosa YfiBNR system.
Min XU ; Xuan YANG ; Xiu-An YANG ; Lei ZHOU ; Tie-Zheng LIU ; Zusen FAN ; Tao JIANG
Protein & Cell 2016;7(6):403-416
YfiBNR is a recently identified bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) signaling system in opportunistic pathogens. It is a key regulator of biofilm formation, which is correlated with prolonged persistence of infection and antibiotic drug resistance. In response to cell stress, YfiB in the outer membrane can sequester the periplasmic protein YfiR, releasing its inhibition of YfiN on the inner membrane and thus provoking the diguanylate cyclase activity of YfiN to induce c-di-GMP production. However, the detailed regulatory mechanism remains elusive. Here, we report the crystal structures of YfiB alone and of an active mutant YfiB(L43P) complexed with YfiR with 2:2 stoichiometry. Structural analyses revealed that in contrast to the compact conformation of the dimeric YfiB alone, YfiB(L43P) adopts a stretched conformation allowing activated YfiB to penetrate the peptidoglycan (PG) layer and access YfiR. YfiB(L43P) shows a more compact PG-binding pocket and much higher PG binding affinity than wild-type YfiB, suggesting a tight correlation between PG binding and YfiB activation. In addition, our crystallographic analyses revealed that YfiR binds Vitamin B6 (VB6) or L-Trp at a YfiB-binding site and that both VB6 and L-Trp are able to reduce YfiB(L43P)-induced biofilm formation. Based on the structural and biochemical data, we propose an updated regulatory model of the YfiBNR system.
Amino Acid Sequence
;
Bacterial Proteins
;
chemistry
;
genetics
;
metabolism
;
Binding Sites
;
Biofilms
;
Crystallography, X-Ray
;
Cyclic GMP
;
analogs & derivatives
;
metabolism
;
Dimerization
;
Molecular Dynamics Simulation
;
Molecular Sequence Data
;
Mutagenesis
;
Protein Structure, Quaternary
;
Pseudomonas aeruginosa
;
metabolism
;
Sequence Alignment
;
Tryptophan
;
chemistry
;
metabolism
;
Vitamin B 6
;
chemistry
;
metabolism
8.A new dimeric lignan from Zanthoxylum simulans.
Ding-xiang LI ; Min LIU ; Xiao-jiang ZHOU
China Journal of Chinese Materia Medica 2015;40(14):2843-2848
To study the chemical constituents from Zanthoxylum simulans and their anti-inflammatory activity. The constituents of Z. simulans were isolated and purified using various column chromatographies. Their chemical structures were elucidated using extensive spectroscopic methods. The compounds were assayed inhibitory activity against NO production in LPS stimulated RAW 264.7 cells. Four compounds were obtained from the ethanol extract of Z. simulans and determined to be isozanthpodocarpin B(1), kobusin (2), (+)-fargesin (3), and epieudesmin (4). Compound 1 exhibited NO production inhibitory effect with IC50 value of 14.49 µmol · L(-1). Compound 1 is a new dimeric lignan and may be serve as potential anti-inflammatory agent in the future.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Cells, Cultured
;
Dimerization
;
Lignans
;
chemistry
;
isolation & purification
;
pharmacology
;
Mice
;
Nitric Oxide
;
antagonists & inhibitors
;
Zanthoxylum
;
chemistry
9.Selective Activator of the Glucocorticoid Receptor Compound A Dissociates Therapeutic and Atrophogenic Effects of Glucocorticoid Receptor Signaling in Skin.
Anna KLOPOT ; Gleb BAIDA ; Pankaj BHALLA ; Guy HAEGEMAN ; Irina BUDUNOVA
Journal of Cancer Prevention 2015;20(4):250-259
BACKGROUND: Glucocorticoids are effective anti-inflammatory drugs widely used in dermatology and for the treatment of blood cancer patients. Unfortunately, chronic treatment with glucocorticoids results in serious metabolic and atrophogenic adverse effects including skin atrophy. Glucocorticoids act via the glucocorticoid receptor (GR), a transcription factor that causes either gene transactivation (TA) or transrepression (TR). Compound A (CpdA), a novel non-steroidal GR ligand, does not promote GR dimerization and TA, retains anti-inflammatory potential but induces fewer metabolic side effects compared to classical glucocorticoids when used systemically. As topical effects of CpdA have not been well studied, this work goal was to compare the anti-inflammatory and side effects of topical CpdA and glucocorticoids and to assess their effect on GR TA and TR in keratinocytes. METHODS: We used murine immortalized keratinocytes and F1 C57BlxDBA mice. Effect of glucocorticoid fluocinolone acetonide (FA) and CpdA on gene expression in keratinocytes in vitro and in vivo was evaluated by reverse transcription-PCR. The anti-inflammatory effects were assessed in the model of tumor promoter 12-O-tertradecanoyl-acetate (TPA)-induced dermatitis and in croton oil-induced ear edema test. Skin atrophy was assessed by analysis of epidermal thickness, keratinocyte proliferation, subcutaneous adipose hypoplasia, and dermal changes after chronic treatment with FA and CpdA. RESULTS: In mouse keratinocytes in vitro and in vivo, CpdA did not activate GR-dependent genes but mimicked closely the inhibitory effect of glucocorticoid FA on the expression of inflammatory cytokines and matrix metalloproteinases. When applied topically, CpdA inhibited TPA-induced skin inflammation and hyperplasia. Unlike glucocorticoids, CpdA itself did not induce skin atrophy which correlated with lack of induction of atrophogene regulated in development and DNA damage response 1 (REDD1) causatively involved in skin and muscle steroid-induced atrophy. CONCLUSIONS: Overall, our results suggest that CpdA and its derivatives represent novel promising class of anti-inflammatory compounds with reduced topical side effects.
Animals
;
Atrophy
;
Croton
;
Cytokines
;
Dermatitis
;
Dermatology
;
Dimerization
;
DNA Damage
;
Ear
;
Edema
;
Fluocinolone Acetonide
;
Gene Expression
;
Glucocorticoids
;
Humans
;
Hyperplasia
;
Inflammation
;
Keratinocytes
;
Matrix Metalloproteinases
;
Mice
;
Receptors, Glucocorticoid*
;
Skin*
;
Transcription Factors
;
Transcriptional Activation
10.Comparison of human and Drosophila atlastin GTPases.
Fuyun WU ; Xiaoyu HU ; Xin BIAN ; Xinqi LIU ; Junjie HU
Protein & Cell 2015;6(2):139-146
Formation of the endoplasmic reticulum (ER) network requires homotypic membrane fusion, which involves a class of atlastin (ATL) GTPases. Purified Drosophila ATL is capable of mediating vesicle fusion in vitro, but such activity has not been reported for any other ATLs. Here, we determined the preliminary crystal structure of the cytosolic segment of Drosophila ATL in a GDP-bound state. The structure reveals a GTPase domain dimer with the subsequent three-helix bundles associating with their own GTPase domains and pointing in opposite directions. This conformation is similar to that of human ATL1, to which GDP and high concentrations of inorganic phosphate, but not GDP only, were included. Drosophila ATL restored ER morphology defects in mammalian cells lacking ATLs, and measurements of nucleotide-dependent dimerization and GTPase activity were comparable for Drosophila ATL and human ATL1. However, purified and reconstituted human ATL1 exhibited no in vitro fusion activity. When the cytosolic segment of human ATL1 was connected to the transmembrane (TM) region and C-terminal tail (CT) of Drosophila ATL, the chimera still exhibited no fusion activity, though its GTPase activity was normal. These results suggest that GDP-bound ATLs may adopt multiple conformations and the in vitro fusion activity of ATL cannot be achieved by a simple collection of functional domains.
Animals
;
Dimerization
;
Drosophila
;
Drosophila Proteins
;
chemistry
;
genetics
;
Endoplasmic Reticulum
;
chemistry
;
GTP Phosphohydrolases
;
chemistry
;
genetics
;
GTP-Binding Proteins
;
chemistry
;
genetics
;
Guanosine Diphosphate
;
chemistry
;
metabolism
;
Humans
;
Membrane Proteins
;
chemistry
;
genetics
;
Mutation
;
Protein Conformation
;
Protein Structure, Secondary

Result Analysis
Print
Save
E-mail