1.Construction and optimization of 1, 4-butanediamine biosensor based on transcriptional regulator PuuR.
Junjie LIU ; Minmin JIANG ; Tong SUN ; Xiangxiang SUN ; Yongcan ZHAO ; Mingxia GU ; Fuping LU ; Ming LI
Chinese Journal of Biotechnology 2025;41(1):437-447
Biosensors have become powerful tools for real-time monitoring of specific small molecules and precise control of gene expression in biological systems. High-throughput sensors for 1, 4-butanediamine biosynthesis can greatly improve the screening efficiency of high-yielding 1, 4-butanediamine strains. However, the strategies for adapting the characteristics of biosensors are still rarely studied, which limits the applicability of 1, 4-butanediamine biosensors. In this paper, we propose the development of a 1, 4-butanediamine biosensor based on the transcriptional regulator PuuR, whose homologous operator puuO is installed in the constitutive promoter PgapA of Escherichia coli to control the expression of the downstream superfolder green fluorescent protein (sfGFP) as the reporter protein. Finally, the biosensor showed a stable linear relationship between the GFP/OD600 value and the concentration of 1, 4-butanediamine when the concentration of 1, 4-butanediamine was 0-50 mmol/L. The promoters with different strengths in the E. coli genome were used to modify the 1, 4-butanediamine biosensor, and the functional properties of the PuuR-based 1, 4-butanediamine biosensor were explored and improved, which laid the groundwork for high-throughput screening of engineered strains highly producing 1, 4-butanediamine.
Biosensing Techniques/methods*
;
Escherichia coli/metabolism*
;
Promoter Regions, Genetic/genetics*
;
Green Fluorescent Proteins/metabolism*
;
Transcription Factors/genetics*
;
Escherichia coli Proteins/genetics*
;
Diamines/metabolism*
;
Gene Expression Regulation, Bacterial
2.Construction of multi-enzyme cascade reactions and its application in the synthesis of bifunctional chemicals.
Jumou LI ; Kun SHI ; Zhijun ZHANG ; Jianhe XU ; Huilei YU
Chinese Journal of Biotechnology 2023;39(6):2158-2189
The synthesis of fine chemicals using multi-enzyme cascade reactions is a recent hot research topic in the field of biocatalysis. The traditional chemical synthesis methods were replaced by constructing in vitro multi-enzyme cascades, then the green synthesis of a variety of bifunctional chemicals can be achieved. This article summarizes the construction strategies of different types of multi-enzyme cascade reactions and their characteristics. In addition, the general methods for recruiting enzymes used in cascade reactions, as well as the regeneration of coenzyme such as NAD(P)H or ATP and their application in multi-enzyme cascade reactions are summarized. Finally, we illustrate the application of multi-enzyme cascades in the synthesis of six bifunctional chemicals, including ω-amino fatty acids, alkyl lactams, α, ω-dicarboxylic acids, α, ω-diamines, α, ω-diols, and ω-amino alcohols.
Amino Acids
;
Biocatalysis
;
Amino Alcohols
;
Coenzymes/metabolism*
;
Diamines
3.An increase in intracelluar free calcium ions modulated by cholinergic receptors in rat facial nucleus.
Da-wei SUN ; Rui ZHOU ; Na LI ; Qiu-gui ZHANG ; Fu-gao ZHU
Chinese Medical Journal 2009;122(9):1049-1055
BACKGROUNDCa(2+) in the central nervous system plays important roles in brain physiology, including neuronal survival and regeneration in rats with injured facial motoneurons. The present research was to study the modulations of intracellular free Ca(2+) concentrations by cholinergic receptors in rat facial nucleus, and the mechanisms of the modulations.
METHODSThe fluorescence intensity of facial nucleus in Fluo-3 AM loaded acute brainstem slices was detected by applying intracellular free Ca(2+) measurement technique via confocal laser scanning microscope. The changes of fluorescence intensity of facial nucleus indicate the average changes of intracellular free Ca(2+) levels of the neurons.
RESULTSAcetylcholine was effective at increasing the fluorescence intensity of facial nucleus. Muscarine chloride induced a marked increase of fluorescence intensity in a concentration dependent fashion. The enhancement of fluorescence intensity by muscarine chloride was significantly reduced by thapsigargin (depletor of intracellular Ca(2+) store; P < 0.01), rather than Ca(2+) free artifical cerebrospinal fluid or EGTA (free Ca(2+) chelator; P > 0.05). And the increase of fluorescence intensity was also significantly inhibited by pirenzepine (M(1) subtype selective antagonist; P < 0.01) and 4-DAMP (M(3) subtype selective antagonist; P < 0.01). In addition, fluorescence intensity was markedly increased by nicotine. The enhancement of fluorescence intensity by nicotine was significantly reduced by EGTA, nifedipine (L-type voltage-gated Ca(2+) channel blocker), dihydro-beta-erythroidine (alpha4beta2 subtype selective antagonist), and in Ca(2+) free artificial cerebrospinal fluid (P < 0.01), but not in the presence of mibefradil (M-type voltage-gated Ca(2+) channel blocker) or thapsigargin (P > 0.05).
CONCLUSIONSThe data provide the evidence that muscarinic receptors may induce the increase of intracellular free Ca(2+) levels through the Ca(2+) release of intracellular Ca(2+) stores, in a manner related to M(1) and M(3) subtypes of muscarinic receptors in rat facial nucleus. Nicotine may increase intracellular free Ca(2+) concentrations via the influx of extracellular Ca(2+)+ mainly across L-type voltage-gated Ca(2+) channels, in a manner related to the alpha4beta2 subtype of nicotinic receptors.
Acetylcholine ; pharmacology ; Aniline Compounds ; administration & dosage ; Animals ; Brain Stem ; cytology ; drug effects ; metabolism ; Calcium ; metabolism ; Diamines ; pharmacology ; Facial Nerve ; cytology ; Female ; Fluorescent Dyes ; administration & dosage ; In Vitro Techniques ; Male ; Microscopy, Confocal ; Motor Neurons ; drug effects ; metabolism ; Muscarinic Agonists ; pharmacology ; Nicotine ; pharmacology ; Nicotinic Agonists ; pharmacology ; Piperidines ; pharmacology ; Pirenzepine ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Cholinergic ; metabolism ; Receptors, Muscarinic ; metabolism ; Receptors, Nicotinic ; metabolism ; Tropicamide ; pharmacology ; Xanthenes ; administration & dosage
4.Carbachol augments Na/Ca exchange current via M2 muscarinic receptors in guinea pig ventricular myocytes.
Xiang-Li CUI ; Huan-Zhen CHEN ; Dong-Mei WU ; Bo-Wei WU
Acta Physiologica Sinica 2004;56(6):713-716
Stimulation of cardiac mAChRs by carbachol (CCh) produces a biphasic inotropic response. The mechanisms of the positive inotropic response by higher concentration of CCh appear to be paradoxical. This article was aimed to study the mechanism of the positive inotropic effect of CCh in guinea pig ventricular myocytes. The effects of CCh on L-type calcium current (I(Ca)) and Na/Ca exchange current (I(Na/Ca)) were observed in voltage-clamped guinea pig ventricular myocytes by using Axon 200A amplifier. The results showed that CCh (100 micromol/L) increased both forward mode and reverse mode I(Na/Ca) from (1.2+/-0.1) pA/pF to (2.0+/-0.3) pA/pF for forward mode (P<0.01) and from (1.3+/-0.5) pA/pF to (2.1+/-0.8) pA/pF for reverse mode (P<0.01), respectively. CCh had no effect on I(Ca). The stimulating effect of CCh on I(Na/Ca) could be blocked by application of atropine, a nonselective blocker of muscarinic receptors, which means that the stimulating effect of CCh is through the activation of muscarinic receptors. We made a further study by using methoctramine, a selective antagonist of M2 muscarinic receptors. It completely abolished I(Na/Ca) induced by 100 micromol/L CCh, indicating that the effect of CCh on I(Na/Ca) was mediated by M2 muscarinic receptors. It is generally accepted that contraction in cardiac myocytes results from elevation of intracellular Ca2+ concentration. Ca2+ enters the cells through two pathways: L-type Ca2+ channels and, less importantly, reverse mode Na/Ca exchange. The calcium influx via both pathways promotes the contraction of cardiac myocytes. Because CCh had no effect on L-type Ca2+ current, the increase in Na/Ca exchange current might be the main factor in the positive inotropism of CCh. These results suggest that the positive inotropic effect of CCh in guinea pig heart is through stimulation of Na/Ca exchange and is mediated by M2 muscarinic receptors.
Animals
;
Calcium Channels, L-Type
;
physiology
;
Carbachol
;
pharmacology
;
Cardiotonic Agents
;
pharmacology
;
Diamines
;
pharmacology
;
Female
;
Guinea Pigs
;
Heart Ventricles
;
Male
;
Myocytes, Cardiac
;
metabolism
;
physiology
;
Patch-Clamp Techniques
;
Receptor, Muscarinic M2
;
physiology
;
Sodium-Calcium Exchanger
;
physiology
5.The effect of eIF-5A on the G1-S in cell cycle regulation.
Bao-Feng JIN ; Kun HE ; Mei-Ru HU ; Ming YU ; Bei-Fen SHEN ; Xue-Min ZHANG
Journal of Experimental Hematology 2003;11(4):325-328
Eukaryotic initiation factor 5A (eIF-5A) contains an unusual amino acid, hypusine, which is formed post-translationally. Although eIF-5A and its hypusine modification are essential for eukaryotic cell viability, the precise physiological function of it has remained elusive. The aim of the study is to investigate how hypusine formation modulate the proliferation, cell cycle and apoptosis in leukaemia cells. The effects of 1,7-diaminoheptane (DAH), a potent inhibitor of deoxyhypusine synthase, on proliferation and cell viability of leukemia cell lines (Mo7e, TF-1 and THP-1) and MCF-7 cells, were investigated. eIF-5A expression level was detected after cell synchronization. The results showed that inhibition of cell proliferation by DAH was in a concentration-dependent manner while apoptosis was also induced at the same time. Upon treatment of the cell lines with DAH, cell growth was inhibited. Cell cycle analysis showed that DAH induced cell growth arrest at the G(1)-S boundary of the cell cycle. In synchronized MCF-7 cells, the expression level of eIF-5A peaked at G(1) phase but very low at S and G(2)/M phases. It is concluded that hypusine formation of eIF-5A exits in the regulation of cell cycle and the results suggest that eIF-5A is involved in the expression of proteins regulating transition of G(1)-S phase of cell cycle.
Cell Line, Tumor
;
Diamines
;
pharmacology
;
G1 Phase
;
physiology
;
Humans
;
Lysine
;
analogs & derivatives
;
metabolism
;
Peptide Initiation Factors
;
physiology
;
RNA-Binding Proteins
;
S Phase
;
physiology

Result Analysis
Print
Save
E-mail