1.Effect mechanism of electroacupuncture on diabetic peripheral neuropathy in rats based on gut microbiota and metabolomics.
Shanshan AI ; Dongrui GAO ; Ziting ZHAI ; Suyong WANG ; Yawen XUE ; Zhihan LIU ; Xiao YAN
Chinese Acupuncture & Moxibustion 2025;45(7):945-956
OBJECTIVE:
To explore the effect mechanism of electroacupuncture (EA) for ameliorating diabetic peripheral neuropathy (DPN) based on the analysis of gut microbiota and metabolomics.
METHODS:
Thirty SPF-grade male SD rats were randomly divided into a normal group, a model group, and an EA group, with 10 rats in each one. Except in the normal group, the intraperitoneally injection with streptozotocin was used to induce diabetes mellitus model in the rest groups. In the EA group, acupuncture was delivered at bilateral "Zusanli" (ST36), "Sanyinjiao" (SP6), "Pishu" (BL20) and "Shenshu" (BL23), and electric stimulation was attached to "Zusanli" (ST36)-"Sanyinjiao" (SP6) and "Pishu" (BL20)-"Shenshu" (BL23), on the same side, with continuous wave and a frequency of 2 Hz, for 10 min in each intervention. The intervention measure of each group was delivered once every 2 days, 3 times a week, for 8 consecutive weeks. Body weight, random blood glucose (RBG), thermal withdrawal latency (TWL), and mechanical withdrawal threshold (MWT) before intervention, and in 4 and 8 weeks of intervention, separately, as well as sensory nerve conduction velocity (SCV) and motor nerve conduction velocity (MCV) of the sciatic nerve after intervention were measured. Metagenomic sequencing (MS) was used to analyze gut microbiota and screen for differential species. Liquid chromatography-mass spectrometry (LC-MS) was employed to detect the differential metabolites in plasma, and the metabolic pathway enrichment analysis was performed on the differential metabolites. Spearman correlation analysis was adopted to assess the relationship between gut microbiota and metabolomics.
RESULTS:
After 4 and 8 weeks of intervention, when compared with the model group, the EA group showed the increase in body weight, TWL, MWT (P<0.01), and the decrease in RBG (P<0.01). Compared with the normal group, SCV and MCV, as well as Chao1 index were dropped in the model group (P<0.01), and those were elevated in the EA group when compared with those in the model group (P<0.01). The dominant bacterial phyla of each group were Firmicutes (F) and Bacteroidota (B), the ratio of them (F/B) in the model group was lower than that of the normal group (P<0.05), and F/B in the EA group was higher when compared with that in the model group (P<0.05). In comparison with the normal group, the relative abundance increased in Prevotella, Segatella, Prevotella-hominis and Segatella-copri (P<0.05); and it decreased in Ligilactobacillus, Eubacterium, Pseudoflavonifractor, Ligilactobacillus-murinus (P<0.05) in the model group. Compared with the model group, the relevant abundance of the above mentioned gut bacteria was all ameliorated in the EA group (P<0.05, P<0.01). Among the three groups, 120 differential metabolites were identified and enriched in 28 key metabolic pathways, such as glycerophospholipid and linoleic acid, of which, glycerophospholipid was the most significantly affected pathway in EA intervention. Spearman correlation analysis showed that 6 phosphatidylcholine metabolites were significantly positively correlated with Pseudoflavonifractor and were negatively with Prevotella, Segatella, Prevotella-hominis, Segatella-copri; 5 phosphatidylethanolamine metabolites were significantly negatively correlated with Pseudoflavonifractor and positively correlated with Prevotella, Segatella, Prevotella-hominis, Segatella-copri.
CONCLUSION
EA may regulate metabolic pathways such as glycerophospholipid, modulate specific gut microbiota such as Pseudoflavonifractor, Prevotella, and Segatella, and the co-expressed differential metabolites like phosphatidylcholine and phosphatidylethanolamine, thereby reducing blood glucose and protecting nerve function, so as to relieve the symptoms of DPN of rats.
Animals
;
Electroacupuncture
;
Male
;
Gastrointestinal Microbiome
;
Diabetic Neuropathies/microbiology*
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Humans
;
Acupuncture Points
2.Effects of acupuncture on podocyte autophagy and the LncRNA SOX2OT/mTORC1/ULK1 pathway in rats with diabetic kidney disease.
Xu WANG ; Yue ZHANG ; Hongwei LI ; Handong LIU ; Jie LI ; Ying FAN ; Zhilong ZHANG
Chinese Acupuncture & Moxibustion 2025;45(10):1450-1458
OBJECTIVE:
To observe the effects of acupuncture on podocyte autophagy and long non-coding RNA SOX2 overlapping transcript (LncRNA SOX2OT)/mammalian target of rapamycin C1 (mTORC1)/Unc-51-like kinase 1 (ULK1) pathway in rats with diabetic kidney disease (DKD), and to explore the mechanism by which acupuncture reduces urinary protein.
METHODS:
A total of 40 SPF-grade male Sprague-Dawley rats were randomly divided into a control group (n=10) and a modeling group (n=30). The DKD model was established by feeding a high-fat, high-sugar diet combined with intraperitoneal injection of streptozotocin (STZ) in the modeling group. Twenty rats with successful DKD model were randomly divided into a model group (n=10) and an acupuncture group (n=10). The acupuncture group received "spleen and stomach-regulating" acupuncture at bilateral "Zusanli" (ST36), "Fenglong" (ST40), "Yinlingquan" (SP9), and "Zhongwan" (CV12), 30 min per session, once daily, five times per week, for four weeks. The general condition, fasting blood glucose (FBG), 2-hour postprandial glucose (2hPG), serum creatinine (SCr), blood urea nitrogen (BUN), 24-hour urinary protein quantification, and urine albumin-to-creatinine ratio (UACR) were compared before and after the intervention. After intervention, urinary podocyte injury marker SPON2 was measured by ELISA. Podocyte autophagosomes and glomerular basement membrane ultrastructure in renal tissue were observed via transmission electron microscopy. Podocyte apoptosis was assessed by TUNEL staining. The protein expression of microtubule-associated protein 1 light chain 3Ⅱ (LC3-Ⅱ), mTORC1, ULK1, Beclin-1, and p62 in renal tissue was detected by Western blot. LncRNA SOX2OT expression in renal tissue was measured by real-time PCR.
RESULTS:
After the intervention, compared with the control group, the model group exhibited increased food and water intake, increased urine output, weight loss, and loose stools; compared with the model group, the food and water intake, urine volume, and loose stools were improved in the acupuncture group. Compared with the control group, FBG, 2hPG, SCr, BUN, 24-hour urinary protein quantification, UACR, and urinary SPON2 were all higher in the model group (P<0.01); compared with the model group, the FBG, 2hPG, SCr, BUN, 24-hour urinary protein quantification, UACR, and urinary SPON2 were all lower in the acupuncture group (P<0.01). Compared with the control group, the model group showed reduced podocyte autophagosomes and thickened glomerular basement membrane; compared with the model group, the acupuncture group had increased podocyte autophagosomes and less thickened basement membrane. Compared with the control group, the podocyte apoptosis index (AI) was higher in the model group (P<0.01); compared with the model group, the AI was lower in the acupuncture group (P<0.01). Compared with the control group, the expression of ULK1, Beclin-1, and LC3-Ⅱ proteins was lower, and the expression of mTORC1 and p62 proteins was higher in the model group (P<0.01). Compared with the model group, the expression of ULK1, Beclin-1, and LC3-Ⅱ proteins was higher, and the expression of mTORC1 and p62 proteins was lower in the acupuncture group (P<0.01). Compared with the control group, the LncRNA SOX2OT expression was lower in the model group (P<0.01). Compared with the model group, LncRNA SOX2OT expression was higher in the acupuncture group (P<0.01).
CONCLUSION
The "spleen and stomach-regulating" acupuncture method could improve renal function in DKD rats, reduce blood glucose and urinary protein excretion, alleviate podocyte injury, and enhance podocyte autophagy. The mechanism may be related to modulation of the renal LncRNA SOX2OT/mTORC1/ULK1 pathway.
Animals
;
Podocytes/cytology*
;
Diabetic Nephropathies/physiopathology*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Mechanistic Target of Rapamycin Complex 1/genetics*
;
Autophagy
;
Acupuncture Therapy
;
Autophagy-Related Protein-1 Homolog/genetics*
;
RNA, Long Noncoding/metabolism*
;
Humans
;
Signal Transduction
3.Epidemiological status, development trends, and risk factors of disability-adjusted life years due to diabetic kidney disease: A systematic analysis of Global Burden of Disease Study 2021.
Jiaqi LI ; Keyu GUO ; Junlin QIU ; Song XUE ; Linhua PI ; Xia LI ; Gan HUANG ; Zhiguo XIE ; Zhiguang ZHOU
Chinese Medical Journal 2025;138(5):568-578
BACKGROUND:
Approximately 40% of individuals with diabetes worldwide are at risk of developing diabetic kidney disease (DKD), which is not only the leading cause of kidney failure, but also significantly increases the risk of cardiovascular disease, causing significant societal health and financial burdens. This study aimed to describe the burden of DKD and explore its cross-country epidemiological status, predict development trends, and assess its risk factors and sociodemographic transitions.
METHODS:
Based on the Global Burden of Diseases (GBD) Study 2021, data on DKD due to type 1 diabetes (DKD-T1DM) and type 2 diabetes (DKD-T2DM) were analyzed by sex, age, year, and location. Numbers and age-standardized rates were used to compare the disease burden between DKD-T1DM and DKD-T2DM among locations. Decomposition analysis was used to assess the potential drivers. Locally weighted scatter plot smoothing and Frontier analysis were used to estimate sociodemographic transitions of DKD disability-adjusted life years (DALYs).
RESULTS:
The DALYs due to DKD increased markedly from 1990 to 2021, with a 74.0% (from 2,227,518 to 3,875,628) and 173.6% (from 4,122,919 to 11,278,935) increase for DKD-T1DM and DKD-T2DM, respectively. In 2030, the estimated DALYs for DKD-T1DM surpassed 4.4 million, with that of DKD-T2DM exceeding 14.6 million. Notably, middle-sociodemographic index (SDI) quintile was responsible for the most significant DALYs. Decomposition analysis revealed that population growth and aging were major drivers for the increased DKD DALYs in most regions. Interestingly, the most pronounced effect of positive DALYs change from 1990 to 2021 was presented in high-SDI quintile, while in low-SDI quintile, DALYs for DKD-T1DM and DKD-T2DM presented a decreasing trend over the past years. Frontiers analysis revealed that there was a negative association between SDI quintiles and age-standardized DALY rates (ASDRs) in DKD-T1DM and DKD-T2DM. Countries with middle-SDI shouldered disproportionately high DKD burden. Kidney dysfunction (nearly 100.0% for DKD-T1DM and DKD-T2DM), high fasting plasma glucose (70.8% for DKD-T1DM and 87.4% for DKD-T2DM), and non-optimal temperatures (low and high, 5.0% for DKD-T1DM and 5.1% for DKD-T2DM) were common risk factors for age-standardized DALYs in T1DM-DKD and T2DM-DKD. There were other specific risk factors for DKD-T2DM such as high body mass index (38.2%), high systolic blood pressure (10.2%), dietary risks (17.8%), low physical activity (6.2%), lead exposure (1.2%), and other environmental risks.
CONCLUSIONS
DKD markedly increased and varied significantly across regions, contributing to a substantial disease burden, especially in middle-SDI countries. The rise in DKD is primarily driven by population growth, aging, and key risk factors such as high fasting plasma glucose and kidney dysfunction, with projections suggesting continued escalation of the burden by 2030.
Humans
;
Global Burden of Disease
;
Risk Factors
;
Male
;
Female
;
Disability-Adjusted Life Years
;
Diabetic Nephropathies/epidemiology*
;
Middle Aged
;
Diabetes Mellitus, Type 2/epidemiology*
;
Adult
;
Diabetes Mellitus, Type 1/complications*
;
Aged
;
Adolescent
;
Young Adult
;
Quality-Adjusted Life Years
4.Research progress on the role and mechanism of ferroptosis in heart diseases.
Yu-Tong CUI ; Xin-Xin ZHU ; Qi ZHANG ; Ai-Juan QU
Acta Physiologica Sinica 2025;77(1):75-84
Cardiovascular disease remains the leading cause of death in China, with its morbidity and mortality continue to rise. Ferroptosis, a unique form of iron-dependent cell death, plays a major role in many heart diseases. The classical mechanisms of ferroptosis include iron metabolism disorder, oxidative antioxidant imbalance and lipid peroxidation. Recent studies have found many additional mechanisms of ferroptosis, such as coenzyme Q10, ferritinophagy, lipid autophagy, mitochondrial metabolism disorder, and the regulation by nuclear factor erythroid 2-related factor 2 (NRF2). This article reviews recent advances in understanding the mechanisms of ferroptosis and its role in heart failure, myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, myocardial toxicity of doxorubicin, septic cardiomyopathy, and arrhythmia. Furthermore, we discuss the potential of ferroptosis inhibitors/inducers as therapeutic targets for heart diseases, suggesting that ferroptosis may be an important intervention target of heart diseases.
Ferroptosis/physiology*
;
Humans
;
Heart Diseases/physiopathology*
;
NF-E2-Related Factor 2/physiology*
;
Animals
;
Myocardial Reperfusion Injury/physiopathology*
;
Lipid Peroxidation
;
Heart Failure/physiopathology*
;
Iron/metabolism*
;
Diabetic Cardiomyopathies/physiopathology*
;
Ubiquinone/analogs & derivatives*
5.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
6.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
7.Mechanism of Yishen Jiangtang Decoction in regulating endoplasmic reticulum stress-mediated NLRP3 inflammasome to improve renal damage in diabetic nephropathy db/db mice.
Yun-Jie YANG ; Bin-Hua YE ; Chen QIU ; Han-Qing WU ; Bo-Wei HUANG ; Tong WANG ; Shi-Wei RUAN ; Fang GUO ; Jian-Ting WANG ; Ming-Qian JIANG
China Journal of Chinese Materia Medica 2025;50(10):2740-2749
This study aims to explore the mechanism through which Yishen Jiangtang Decoction(YSJTD) regulates endoplasmic reticulum stress(ERS)-mediated NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome to improve diabetic nephropathy(DN) in db/db mice. Thirty db/db mice were randomly divided into the model group, YSJTD group, ERS inhibitor 4-phenylbutyric acid(4-PBA) group, with 10 mice in each group. Additionally, 10 db/m mice were selected as the control group. The YSJTD group was orally administered YSJTD at a dose of 0.01 mL·g~(-1), the 4-PBA group was orally administered 4-PBA at a dose of 0.5 mg·g~(-1), and the control and model groups were given an equal volume of carboxylmethyl cellulose sodium. The treatments were administered once daily for 8 weeks. Food intake, water consumption, and body weight were recorded every 2 weeks. After the intervention, fasting blood glucose(FBG), glycosylated hemoglobin(HbA1c), urine microalbumin(U-mALB), 24-hour urine volume, serum creatinine(Scr), and blood urea nitrogen(BUN) were measured. Inflammatory markers interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected using the enzyme-linked immunosorbent assay(ELISA). Renal pathology was assessed through hematoxylin-eosin(HE), periodic acid-Schiff(PAS), and Masson staining, and transmission electron microscopy(TEM). Western blot was used to detect the expression levels of glucose-regulated protein 78(GRP78), C/EBP homologous protein(CHOP), NLRP3, apoptosis-associated speck-like protein containing CARD(ASC), cysteinyl aspartate-specific proteinase(caspase-1), and gasdermin D(GSDMD) in kidney tissues. The results showed that compared to the control group, the model group exhibited poor general condition, increased weight and food and water intake, and significantly higher levels of FBG, HbA1c, U-mALB, kidney index, 24-hour urine volume, IL-1β, and IL-18. Compared to the model group, the YSJTD and 4-PBA groups showed improved general condition, increased body weight, decreased food intake, and lower levels of FBG, U-mALB, kidney index, 24-hour urine volume, and IL-1β. Specifically, the YSJTD group showed a significant reduction in IL-18 levels compared to the model group, while the 4-PBA group exhibited decreased water intake and HbA1c levels compared to the model group. Although there was a decreasing trend in water intake and HbA1c in the YSJTD group, the differences were not statistically significant. No significant differences were observed in BUN, Scr, and kidney weight among the groups. Renal pathology revealed that the model group exhibited more severe renal damage compared to the control group. Kidney sections from the model group showed diffuse mesangial proliferation in the glomeruli, tubular edema, tubular dilation, significant inflammatory cell infiltration in the interstitium, and increased glycogen staining and blue collagen deposition in the basement membrane. In contrast, the YSJTD and 4-PBA groups showed varying degrees of improvement in renal damage, glycogen staining, and collagen deposition, with the YSJTD group showing more significant improvements. TEM analysis indicated that the model group had extensive cytoplasmic edema, homogeneous thickening of the basement membrane, fewer foot processes, and widening of fused foot processes. In the YSJTD and 4-PBA groups, cytoplasmic swelling of renal tissues was reduced, the basement membrane remained intact and uniform, and foot process fusion improved.Western blot results indicated that compared to the control group, the model group showed upregulation of GRP78, CHOP, GSDMD, NLRP3, ASC, and caspase-1 expression. In contrast, both the YSJTD and 4-PBA groups showed downregulation of these markers compared to the model group. These findings suggest that YSJTD exerts a protective effect against DN by alleviating NLRP3 inflammasome activation through the inhibition of ERS, thereby improving the inflammatory response in db/db DN mice.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Diabetic Nephropathies/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Inflammasomes/drug effects*
;
Male
;
Kidney/pathology*
;
Endoplasmic Reticulum Chaperone BiP
;
Humans
;
Interleukin-18/genetics*
;
Mice, Inbred C57BL
8.Alpiniae Oxyphyllae Fructus-Saposhnikoviae Radix regulates NLRP3 inflammasome to ameliorate inflammatory response in diabetic kidney disease mice through PI3K/Akt/mTOR signaling pathway.
Zi-Jie YAN ; Lin ZHANG ; Xin-Yao HAN ; Tian-Peng MA ; Song-Jing ZHOU
China Journal of Chinese Materia Medica 2025;50(10):2798-2809
This study aims to evaluate the therapeutic effect of Alpiniae Oxyphyllae Fructus-Saposhnikoviae Radix(AOF-SR) in a diabetic kidney disease(DKD) mouse model, explore its potential mechanism in regulating the NOD-like receptor protein 3(NLRP3) inflammasome via phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathway, and provide new theoretical support for traditional Chinese medicine(TCM) intervention in DKD. Using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), the active ingredients and potential targets of AOF-SR were screened and its molecular mechanisms were investigated through molecular docking, molecular dynamics simulations, and experimental validation. The db/db mice were randomly divided into four groups: model group, low-dose AOF-SR group, high-dose AOF-SR group, and canagliflozin group. The db/m mice served as normal group. After one week of acclimatization, the mice underwent drug intervention. Starting from one week after treatment, body weight, blood glucose levels, and 24-hour urinary protein(24hUP) were measured every two weeks. After 13 weeks of administration, tissue collection and indicator detection were performed. Blood glucose, 24hUP, urinary microalbumin(mAlb), serum creatinine(Scr), and blood urea nitrogen(BUN) levels were determined. Pathological changes in kidney tissue were observed using hematoxylin-eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of serum IL-1β, IL-18, and caspase-1, while RT-qPCR was employed to measure the mRNA expression levels of IL-1β, IL-18, caspase-1, and NLRP3. Western blot was used to assess the protein expression levels of NLRP3, PI3K, p-Akt, Akt, p-mTOR, and mTOR. Network pharmacology analysis indicated that wogonin, pinocembrin, hancinol, and kaempferol were the core compounds for drug treatment of the disease. Molecular docking and molecular dynamics simulations showed that core compounds, particularly wogonin, could specifically bind to PIK3R1, thereby regulating the PI3K/Akt/mTOR pathway. The experimental results indicated that both low and high doses of AOF-SR and canagliflozin significantly reduced blood glucose, 24hUP, mAlb, Scr, and BUN levels in db/db mice, while improving kidney pathological damage and inflammatory cell infiltration. Moreover, the treatments reduced the mRNA expression levels of caspase-1, IL-1β, and IL-18 in the kidneys of db/db mice, as well as the secretion of these factors in the serum. The drugs also inhibited the mRNA and protein expression levels of NLRP3 in the kidneys of db/db mice and decreased the protein levels of PI3K, p-Akt/Akt, and p-mTOR/mTOR. In conclusion, AOF-SR may improve kidney inflammation in DKD mice by regulating the PI3K/Akt/mTOR signaling pathway and inhibiting NLRP3 inflammasome activation.
Animals
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Signal Transduction/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Diabetic Nephropathies/metabolism*
;
Inflammasomes/drug effects*
;
Male
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Mice, Inbred C57BL
9.Bioinformatics analysis of efferocytosis-related genes in diabetic kidney disease and screening of targeted traditional Chinese medicine.
Yi KANG ; Qian JIN ; Xue-Zhe WANG ; Meng-Qi ZHOU ; Hui-Juan ZHENG ; Dan-Wen LI ; Jie LYU ; Yao-Xian WANG
China Journal of Chinese Materia Medica 2025;50(14):4037-4052
This study employed bioinformatics to screen the feature genes related to efferocytosis in diabetic kidney disease(DKD) and explores traditional Chinese medicine(TCM) regulating these feature genes. The GSE96804 and GSE30528 datasets were integrated as the training set, and the intersection of differentially expressed genes and efferocytosis-related genes(ERGs) was identified as DKD-ERGs. Subsequently, correlation analysis, protein-protein interaction(PPI) network construction, enrichment analysis, and immune infiltration analysis were performed. Consensus clustering was conducted on DKD patients based on the expression levels of DKD-ERGs, and the expression levels, immune infiltration characteristics, and gene set variations between different subtypes were explored. Eight machine learning models were constructed and their prediction performance was evaluated. The best-performing model was evaluated by nomograms, calibration curves, and external datasets, followed by the identification of efferocytosis-related feature genes associated with DKD. Finally, potential TCMs that can regulate these feature genes were predicted. The results showed that the training set contained 640 differentially expressed genes, and after intersecting with ERGs, 12 DKD-ERGs were obtained, which demonstrated mutual regulation and immune modulation effects. Consensus clustering divided DKD into two subtypes, C1 and C2. The support vector machine(SVM) model had the best performance, predicting that growth arrest-specific protein 6(GAS6), S100 calcium-binding protein A9(S100A9), C-X3-C motif chemokine ligand 1(CX3CL1), 5'-nucleotidase(NT5E), and interleukin 33(IL33) were the feature genes of DKD. Potential TCMs with therapeutic effects included Astragali Radix, Trionycis Carapax, Sargassum, Rhei Radix et Rhizoma, Curcumae Radix, and Alismatis Rhizoma, which mainly function to clear heat, replenish deficiency, activate blood, resolve stasis, and promote urination and drain dampness. Molecular docking revealed that the key components of these TCMs, including β-sitosterol, quercetin, and sitosterol, exhibited good binding activity with the five target genes. These results indicated that efferocytosis played a crucial role in the development and progression of DKD. The feature genes closely related to both DKD and efferocytosis, such as GAS6, S100A9, CX3CL1, NT5E, and IL33, were identified. TCMs such as Astragali Radix, Trionycis Carapa, Sargassum, Rhei Radix et Rhizoma, Curcumae Radix, and Alismatis Rhizoma may provide a new therapeutic strategy for DKD by regulating efferocytosis.
Humans
;
Computational Biology
;
Diabetic Nephropathies/physiopathology*
;
Protein Interaction Maps
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal
;
Phagocytosis/genetics*
;
Efferocytosis
10.Development of core outcome set for traditional Chinese medicine interventions in diabetic peripheral neuropathy.
Lu-Jie WANG ; Liang-Zhen YOU ; Chang CHANG ; Yu-Meng GENG ; Jin-Dong ZHAO ; Zhao-Hui FANG ; Ai-Juan JIANG
China Journal of Chinese Materia Medica 2025;50(14):4071-4080
This study developed a core outcome set(COS) for traditional Chinese medicine(TCM) interventions in diabetic peripheral neuropathy(DPN), standardizing evaluation metrics for TCM efficacy and providing a new framework for DPN treatment and management. A systematic search was conducted across databases, including CNKI, Wanfang, and PubMed, targeting clinical trial literature published between January 1, 2013, and January 1, 2023. The search focused on extracting outcome indicators and measurement tools used in TCM treatments for DPN. Retrospective data collection was performed from January 2018 to June 2023, involving 200 DPN patients hospitalized at the Department of Endocrinology of the First Affiliated Hospital of Anhui University of Chinese Medicine. Additionally, semi-structured interviews were conducted with inpatients, outpatients, their families, and nursing staff to further refine and enhance the list of outcome indicators. After two rounds of Delphi questionnaire survey and consensus meeting, a consensus was reached. The study initially retrieved 3 421 publications, of which 170 met the inclusion criteria after review. These publications, combined with retrospective analysis and semi-structured interviews, supplemented the list of indicators. After two rounds of Delphi surveys, experts agreed on 24 indicators and 6 measurement tools. The final COS determined by expert consensus meeting included 5 domains and 13 outcome indicators: neurological function signs, quality of life, TCM syndrome score, nerve conduction velocity, current perception threshold test, fasting blood glucose, 2 h postprandial blood glucose, glycated hemoglobin, complete blood count, urinalysis, liver function test, kidney function test, and electrocardiogram.
Humans
;
Diabetic Neuropathies/drug therapy*
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
Retrospective Studies
;
Treatment Outcome
;
Male
;
Female

Result Analysis
Print
Save
E-mail