1.Oxidative stress in diabetes mellitus and its complications: From pathophysiology to therapeutic strategies.
Xingyu CHEN ; Na XIE ; Lixiang FENG ; Yujing HUANG ; Yuyao WU ; Huili ZHU ; Jing TANG ; Yuanyuan ZHANG
Chinese Medical Journal 2025;138(1):15-27
Oxidative stress due to aberrant metabolism is considered as a crucial contributor to diabetes and its complications. Hyperglycemia and hyperlipemia boost excessive reactive oxygen species generation by elevated mitochondrial respiration, increased nicotinamide adenine dinucleotide phosphate oxidase activity, and enhanced pro-oxidative processes, including protein kinase C pathways, hexosamine, polyol, and advanced glycation endproducts, which exacerbate oxidative stress. Oxidative stress plays a significant role in the onset of diabetes and its associated complications by impairing insulin production, increasing insulin resistance, maintaining hyperglycemic memory, and inducing systemic inflammation. A more profound comprehension of the molecular processes that link oxidative stress to diabetes is crucial to new preventive and therapeutic strategies. Therefore, this review discusses the mechanisms underlying how oxidative stress contributes to diabetes mellitus and its complications. We also summarize the current approaches for prevention and treatment by targeting the oxidative stress pathways in diabetes.
Oxidative Stress/physiology*
;
Humans
;
Diabetes Mellitus/physiopathology*
;
Diabetes Complications/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Glycation End Products, Advanced/metabolism*
;
Animals
2.The impact of glycemic variability on diabetic complications and related mechanisms.
Jing-Yi LIU ; Qi AN ; Si-Qi ZHANG ; Biao YANG ; Ya-Qiong LI
Acta Physiologica Sinica 2025;77(5):925-938
Diabetes mellitus (DM) is a major global health issue, with glycated hemoglobin levels serving as the gold standard for evaluating glucose level control in DM patients. However, it has limitations in reflecting glucose oscillations (i.e. glycemic variability, GV). Increasing evidence suggests that GV is closely related to the progression of diabetes complications and patient prognosis. As people realize the importance of avoiding hypoglycemia while achieving target glycated hemoglobin levels in treatment, the clinical significance of GV becomes more obvious. This article systematically reviewed the concept and connotation of GV, summarized the latest research on its role in the complications of diabetes, and revealed the biochemical and pathophysiological abnormalities caused by excessive glycemic oscillation, aiming to provide a theoretical basis for the risk warning and early intervention of DM patients.
Humans
;
Blood Glucose/metabolism*
;
Diabetes Complications/physiopathology*
;
Glycated Hemoglobin/metabolism*
;
Hypoglycemia
;
Diabetes Mellitus, Type 2/complications*
3.Perioperative digital surveillance with a multiparameter vital signs monitoring system in a gastric cancer patient with diabetes.
Reziya AIERKEN ; Z W JIANG ; G W GONG ; P LI ; X Y LIU ; F JI
Chinese Journal of Gastrointestinal Surgery 2025;28(11):1318-1322
Objective: To evaluate the application value of a digital technology-based multiparameter vital signs monitoring system in perioperative comprehensive full-cycle surveillance. Methods: A comprehensive multidimensional vital signs monitoring system was developed through the integration of medical-grade wireless wearable devices, incorporating patch-type ambulatory electrocardiographic monitor, continuous glucose monitoring sensor, pulse oximeter, wireless digital thermometer, smart wristband, and bioelectrical impedance analyzer. This system facilitates continuous real-time acquisition of multiple physiological parameters including electrocardiogram, blood glucose, oxygen saturation, body temperature, physical activity, and body composition indices. The acquired data were systematically integrated and analyzed through a four-level digital architecture consisting of nurse mobile interfaces, bedside patient terminals, centralized ward monitoring displays, and hospital management information systems. One patient with gastric cancer complicated by diabetes mellitus was selected for full-cycle digital monitoring from preoperative evaluation to hospital discharge. The technical performance of the monitoring system was assessed in terms of data acquisition continuity and timeliness of abnormal event alerts. Results: The monitoring system effectively identified early postoperative abnormalities, such as decreased oxygen saturation and blood glucose fluctuations, providing timely guidance for clinical intervention. The built-in algorithm enabled visualization of perioperative stress levels through heart rate variability indices and continuous glucose monitoring data. The patient demonstrated good compliance with early postoperative mobilization, and the satisfaction score for monitoring management was 4 points based on the Likert 5-point scale. Conclusions: The multiparameter vital signs monitoring system enhanced the precision of perioperative management through continuous and dynamic physiological status assessment. Its modular design aligns with the principles of enhanced recovery after surgery, offering a novel technological solution for intelligent perioperative management.
Humans
;
Stomach Neoplasms/physiopathology*
;
Vital Signs
;
Monitoring, Physiologic/instrumentation*
;
Diabetes Mellitus
;
Wearable Electronic Devices
;
Perioperative Period
4.Electroacupuncture Promotes Gastric Motility by Suppressing Pyroptosis via NLRP3/Caspase-1/GSDMD Signaling Pathway in Diabetic Gastroparesis Rats.
Hao HUANG ; Yan PENG ; Le XIAO ; Jing WANG ; Yu-Hong XIN ; Tian-Hua ZHANG ; Xiao-Yu LI ; Xing WEI
Chinese journal of integrative medicine 2025;31(5):448-457
OBJECTIVE:
To investigate the mechanism of electroacupuncture (EA) in treating diabetic gastroparesis (DGP) by inhibiting the activation of Nod-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome and pyroptosis mediated via NLRP3/cysteinyl aspartate specific proteinase-1 (caspase-1)/gasdermin D (GSDMD) signaling pathway.
METHODS:
Forty Sprague-Dawley rats were randomly divided into 4 groups including the control, DGP model, EA, and MCC950 groups. The DGP model was established by a one-time high-dose intraperitoneal injection of 2% streptozotocin and a high-glucose and high-fat diet for 8 weeks. EA intervention was conducted at Zusanli (ST 36), Liangmen (ST 21) and Sanyinjiao (SP 6) with sparse-dense wave for 15 min, and was administered for 3 courses of 5 days. After intervention, the blood glucose, urine glucose, gastric emptying, and intestinal propulsive rate were observed. Besides, HE staining was used to observe histopathological changes in gastric antrum tissues, and TUNEL staining was utilized to detect DNA damage. Protein expression levels of NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), pro-caspase-1, caspase-1 and GSDMD were measured by Western blot. Immunofluorescence staining was employed to assess the activity of GSDMD-N. Lactate dehydrogenase (LDH) levels were detected by using a biochemical kit.
RESULTS:
DGP rats showed persistent hyperglycemia and a significant decrease in gastrointestinal motility (P<0.05 or P<0.01), accompanied by pathological damage in their gastric antrum tissues. Cellular DNA was obviously damaged, and the expressions of NLRP3, ASC, pro-caspase-1, caspase-1 and GSDMD proteins were significantly elevated, along with enhanced fluorescence signals of GSDMD-N and increased LDH release (P<0.01). EA mitigated hyperglycemia, improved gastrointestinal motility in DGP rats and alleviated their pathological injury (P<0.05). Furthermore, EA reduced cellular DNA damage, lowered the protein levels of NLRP3, ASC, pro-caspase-1, caspase-1 and GSDMD, suppressed GSDMD-N activity, and decreased LDH release (P<0.05 or P<0.01), demonstrating effects comparable to MCC950.
CONCLUSION
EA promotes gastrointestinal motility and repairs the pathological damage in DGP rats, and its mechanism may be related to the inhibition of NLRP3 inflammasome and pyroptosis mediated by NLRP3/caspase-1/GSDMD pathway.
Animals
;
Electroacupuncture
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Gastroparesis/physiopathology*
;
Signal Transduction
;
Male
;
Diabetes Mellitus, Experimental/physiopathology*
;
Phosphate-Binding Proteins/metabolism*
;
Gastrointestinal Motility
;
Rats
;
Intracellular Signaling Peptides and Proteins/metabolism*
;
Diabetes Complications/physiopathology*
;
Gasdermins
5.Tongmai Hypoglycemic Capsule Attenuates Myocardial Oxidative Stress and Fibrosis in the Development of Diabetic Cardiomyopathy in Rats.
Jie-Qiong ZENG ; Hui-Fen ZHOU ; Hai-Xia DU ; Yu-Jia WU ; Qian-Ping MAO ; Jun-Jun YIN ; Hai-Tong WAN ; Jie-Hong YANG
Chinese journal of integrative medicine 2025;31(3):251-260
OBJECTIVE:
To investigate the effect of Tongmai Hypoglycemic Capsule (THC) on myocardium injury in diabetic cardiomyopathy (DCM) rats.
METHODS:
A total of 24 Sprague Dawley rats were fed for 4 weeks with high-fat and high-sugar food and then injected with streptozotocin intraperitoneally for the establishment of the DCM model. In addition, 6 rats with normal diets were used as the control group. After modeling, 24 DCM rats were randomly divided into the model, L-THC, M-THC, and H-THC groups by computer generated random numbers, and 0, 0.16, 0.32, 0.64 g/kg of THC were adopted respectively by gavage, with 6 rats in each group. After 12 weeks of THC administration, echocardiography, histopathological staining, biochemical analysis, and Western blot were used to detect the changes in myocardial structure, oxidative stress (OS), biochemical indexes, protein expressions of myocardial fibrosis, and nuclear factor erythroid 2-related faactor 2 (Nrf2) element, respectively.
RESULTS:
Treatment with THC significantly decreased cardiac markers such as creatine kinase, lactate dehydrogenase, and creatine kinase-MB, etc., (P<0.01); enhanced cardiac function indicators including heart rate, ejection fraction, cardiac output, interventricular septal thickness at diastole, and others (P<0.05 or P<0.01); decreased levels of biochemical indicators such as fasting blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, aspartate transaminase, (P<0.05 or P<0.01); and decreased the levels of myocardial fibrosis markers α-smooth muscle actin (α-SMA), and collagen I (Col-1) protein (P<0.01), improved myocardial morphology and the status of myocardial interstitial fibrosis. THC significantly reduced malondialdehyde levels in model rats (P<0.01), increased levels of catalase, superoxide dismutase, and glutathione (P<0.01), and significantly increased the expression of Nrf2, NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and superoxide dismutase 2 proteins in the left ventricle of rats (P<0.01).
CONCLUSION
THC activates the Nrf2 signaling pathway and plays a protective role in reducing OS injury and cardiac fibrosis in DCM rats.
Animals
;
Diabetic Cardiomyopathies/physiopathology*
;
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats, Sprague-Dawley
;
Myocardium/metabolism*
;
Fibrosis
;
Male
;
Capsules
;
Hypoglycemic Agents/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Rats
;
Diabetes Mellitus, Experimental/drug therapy*
6.A review on mechanistic actions of epigallocatechin-3-gallate in targeting the ominous octet of type 2 diabetes mellitus.
Chee Ning WONG ; Yang Mooi LIM ; Kai Bin LIEW ; Yik-Ling CHEW ; Ang-Lim CHUA ; Siew-Keah LEE
Journal of Integrative Medicine 2025;23(4):344-356
Epigallocatechin-3-gallate (EGCG), a prominent plant-based catechin predominantly derived from Camellia sinensis and widely available on the market as a health supplement, has garnered significant attention for its potential therapeutic benefits, particularly in the context of type 2 diabetes mellitus (T2DM). This review explores the multifaceted role of EGCG in addressing the "ominous octet"-the 8 core pathophysiological defects associated with T2DM. The literature search was carried out using key terms "EGCG" OR "epigallocatechin-3-gallate" OR "epigallocatechin gallate" AND "diabetes" OR "insulin resistance" OR "hyperglycemia" in the PubMed and Scopus databases. The search was constrained to articles published between January 2018 and April 2024, focusing on the document type. Full-text articles published in English and relevant to EGCG that featured a single active ingredient, included clearly explained diabetes relief mechanism, and included ominous octet aspects were included in the final review. The outcomes of the included studies were reviewed and categorized based on 8 core pathophysiological defects, collectively referred to as the ominous octet in T2DM. This review concludes that EGCG is a potent hypoglycemic agent that has beneficial effects against the ominous octet in addition to its pharmacological activities in modulating gut microbiota dysbiosis, carbohydrate digestion and metabolism, glucose transporter-mediated intestinal glucose-uptake, endothelial dysfunction, and renal damage that are significantly associated with pathogenesis of T2DM. This extensive scientific evidence suggests that EGCG may offer a novel approach to traditional antidiabetic therapies, potentially improving glycemic control and mitigating complications associated with T2DM. The inhibitory effects of EGCG on sodium-glucose transport proteins and their role in reducing renal glucose reabsorption remain unexplored, highlighting a significant research gap. Future research should also aim to broaden the scope by investigating the "egregious eleven," which comprise a more comprehensive range of diabetic pathophysiological features. This review underscores the therapeutic promise of EGCG for managing T2DM and encourages ongoing research to fully elucidate its clinical applications. Please cite this article as: Wong CN, Lim YM, Liew KB, Chew YL, Chua AL, Lee SK. A review on mechanistic actions of epigallocatechin-3-gallate in targeting the ominous octet of type 2 diabetes mellitus. J Integr Med. 2025; 23(4): 344-356.
Diabetes Mellitus, Type 2/physiopathology*
;
Humans
;
Catechin/therapeutic use*
;
Hypoglycemic Agents/therapeutic use*
;
Animals
;
Insulin Resistance
7.Electroacupuncture at ST36 improves gastrointestinal motility disorders by promoting enteric nervous system regeneration through GDNF/Ret signaling in diabetic mice.
Jin-Lu GUO ; Shi LIU ; Sheng-Jie DING ; Xin YANG ; Fan DU
Journal of Integrative Medicine 2025;23(5):548-559
OBJECTIVE:
Diabetes-induced gastrointestinal (GI) motility disorders are increasingly prevalent. Damage to the enteric nervous system (ENS), composed primarily of enteric neurons and glial cells, is an essential mechanism involved in these disorders. Although electroacupuncture (EA) has shown the potential to mitigate enteric neuronal loss, its mechanism is not fully understood. Additionally, the effects of EA on enteric glial cells have not been investigated. Enteric neural precursor cells (ENPCs) contribute to the structural and functional integrity of the ENS, yet whether EA enhances their differentiation into enteric neurons and glial cells remains unexplored. This study investigates whether EA promotes ENS repair through enhancing ENPC-derived neurogenesis and gliogenesis and elucidates the potential molecular mechanisms involved.
METHODS:
Transgenic mice were used to trace Nestin+/nerve growth factor receptor (Ngfr)+ ENPCs labeled with green fluorescent protein (GFP) in vivo. Mice were randomly divided into four groups: control, diabetes mellitus (DM), DM + sham EA, and DM + EA. The effects of EA on diabetic mice were evaluated by GI motility, ENS structure, and ENPC differentiation. Glial cell line-derived neurotrophic factor (GDNF)/Ret signaling was detected to clarify the underlying molecular mechanisms.
RESULTS:
EA alleviated diabetes-induced GI motility disorders, as indicated by reduced whole gut transit time, shortened colonic bead expulsion time, and enhanced smooth muscle contractility. Furthermore, EA attenuated diabetes-induced losses of enteric neurons and glial cells, thereby restoring ENS integrity. Notably, EA reversed the diabetes-induced decrease in ENPCs and significantly increased the absolute number and the proportion of ENPC-derived enteric neurons. However, immunofluorescence analyses revealed no colocalization between EA-induced glial fibrillary acidic protein+ glial cells and GFP-labeled ENPCs. Mechanistically, GDNF/Ret signaling was elevated in intestinal tissues and upregulated in ENPCs in EA-treated diabetic mice.
CONCLUSION
EA facilitates ENS repair by promoting Nestin+/Ngfr+ ENPC differentiation into enteric neurons via upregulation of GDNF/Ret signaling, and driving enteric gliogenesis from non-Nestin+/Ngfr+ ENPCs. These findings highlight EA's role in ameliorating diabetes-induced GI dysmotility through ENPC-derived ENS restoration. Please cite this article as: Guo JL, Liu S, Ding SJ, Yang X, Du F. Electroacupuncture at ST36 improves gastrointestinal motility disorders by promoting enteric nervous system regeneration through GDNF/Ret signaling in diabetic mice. J Integr Med. 2025; 23(5):548-559.
Animals
;
Electroacupuncture
;
Enteric Nervous System/physiology*
;
Gastrointestinal Motility/physiology*
;
Glial Cell Line-Derived Neurotrophic Factor/metabolism*
;
Diabetes Mellitus, Experimental/therapy*
;
Signal Transduction
;
Mice
;
Gastrointestinal Diseases/physiopathology*
;
Proto-Oncogene Proteins c-ret/metabolism*
;
Mice, Transgenic
;
Male
;
Nerve Regeneration
;
Neural Stem Cells
;
Mice, Inbred C57BL
;
Acupuncture Points
8.Altered Cerebral Blood Flow in Type 2 Diabetes Mellitus Without Cognitive Impairment.
Jia-Ying YANG ; Xue-Wei ZHANG ; Xue-Qing LIU ; Jia-Min ZHOU ; Miao HE ; Jing LI ; Xia-Li SHAO ; Wen-Hui LI ; Yu-Zhou GUAN ; Wei-Hong ZHANG ; Feng FENG
Acta Academiae Medicinae Sinicae 2025;47(2):219-225
Objective To investigate the alterations of cerebral blood flow(CBF)in type 2 diabetic mellitus(T2DM) patients without cognitive impairment by using arterial spin labeling(ASL)technique.Methods A total of 23 T2DM patients without cognitive impairment and 23 healthy controls(HC)matched by age,sex,and education attainment were recruited.Their clinical data were collected,and neuropsychological tests and cerebral magnetic resonance imaging were performed.Then,the outcomes of clinical features,neuropsychological tests,and global and regional CBF were compared between the two groups.The significant regional zCBF(z-transformed relative CBF)values were extracted and correlated with clinical data and neuropsychological scores in T2DM patients,controlling age,sex,and education.Results No significant difference was found in whole brain CBF between the two groups(P=0.155),while significantly higher CBF was identified in the left superior temporal gyrus and left insula in the T2DM group(Gaussian random field correction,initial threshold P < 0.001,cluster level P < 0.05).No correlation was observed between the significant regional zCBF values and the clinical data or the neuropsychological scores in T2DM patients(all P>0.05).Conclusion Alterations in cerebral hemodynamics may precede cognitive function changes in T2DM,suggesting that the ASL technique is promising for early monitoring of cerebral hemodynamic changes associated with cognitive impairment in patients with T2DM.
Humans
;
Diabetes Mellitus, Type 2/physiopathology*
;
Cerebrovascular Circulation
;
Middle Aged
;
Male
;
Female
;
Magnetic Resonance Imaging
;
Case-Control Studies
;
Cognitive Dysfunction
;
Neuropsychological Tests
;
Aged
9.Exosomes and their roles in diabetes mellitus and its complications: from pathogenic, diagnostic and therapeutical perspectives.
Yin SHOU ; Yu-Hang MA ; Li HU ; Ping XU ; Wei-Bo ZHANG ; Yuan GAO ; Bi-Meng ZHANG
Acta Physiologica Sinica 2019;71(6):917-934
Exosome is a kind of nanoscale-size extracellular vesicles secreted by the means of cell active stimulation with outer membrane structure of vacuoles corpuscle. It can carry and transfer a lot of biological molecules, such as DNA fragments, circular RNA (circRNA), messenger RNA (mRNA), microRNA (miRNA), functional proteins, transcription factors, etc., so as to achieve the goal of information transmission between cells. The relationship between exosomes and diabetes has received extensive attention in recent years. The exosomes play an important role in insulin sensitivity, glucose homeostasis and vascular endothelial function. This paper reviews the role of exosomes in the occurrence and development of diabetes and its complications, and discusses the role and prospect of exosomes as a target for diabetes treatment and its role in the diagnosis and treatment of diabetes.
Diabetes Mellitus
;
diagnosis
;
physiopathology
;
therapy
;
Exosomes
;
metabolism
;
Humans
;
Insulin Resistance
;
physiology
;
MicroRNAs
;
metabolism
;
RNA, Messenger
;
metabolism
10.Neuromuscular Pharmacodynamics of Rocuronium in Diabetic Rats.
Xiao Wen LIU ; Rui Song GONG ; Zhen LIU ; Jun ZUO ; Jing ZHAO
Acta Academiae Medicinae Sinicae 2019;41(2):149-155
Objective To investigate diabetes-mediated changes in the neuromuscular pharmacodynamics of rocuronium in rats. Methods Diabetes mellitus was induced by a single injection of streptozotocin in rats.A total of 24 male SD rats were assigned to four groups using random number table:the normal control group,diabetic 2-week group,diabetic 4-week group,and diabetic 8-week group(6 rats per group).The sciatic nerve was stimulated in a rain-of-four(TOF)pattern,and the twitch tension changes in the tibialis anterior muscle were demonstrated by mechanomyography after intravenous injection of rocuronium in vivo.The time course characteristics of rocuronium,including onset time,and the recovery time from rocuronium injection to TOF ratio 75%(RT75%)and 90%(RT90%),were recorded,and half maximal inhibitory concentration(IC)values of rocuronium were determined using a four-parameter dose response curve. Results Compared with the normal controls,the diabetic rats had significantly prolonged onset time of rocuronium,while the RT75% and RT90% were decreased at all rocuronium doses(P<0.001).The time course changes became increasingly significant as the duration of diabetes lengthened(P<0.001).The IC and 95% confidence interval values for rocuronium in the normal control group,diabetic 2-week group,diabetic 4-week group,and diabetic 8-week group were 0.37(0.35-0.38)mg/kg,0.44(0.43-0.46)mg/kg,0.59(0.57-0.61)mg/kg,and 0.64(0.61-0.66)mg/kg,respectively.IC values were significantly higher in the diabetic groups vs.normal control(P<0.001)and gradually increased as the duration of diabetes lengthened(P<0.001).Conclusion Diabetes is associated with the rat skeletal muscle hyposensitivity to rocuronium,which is featured by prolonged onset time of rocuronium,decreased RT 75% and RT 90%,and right shift of the cumulative dose-response curve of rocuronium.
Animals
;
Diabetes Mellitus, Experimental
;
physiopathology
;
Male
;
Muscle, Skeletal
;
drug effects
;
Neuromuscular Nondepolarizing Agents
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Rocuronium
;
pharmacology

Result Analysis
Print
Save
E-mail