1.Effect of moxibustion on central insulin resistance related proteins in diabetic rats with cognitive decline.
Min YE ; Aihong YUAN ; Lele ZHANG ; Hongyu XIE ; Hudie SONG ; Yinqiu FAN ; Jun YANG
Chinese Acupuncture & Moxibustion 2025;45(2):185-192
OBJECTIVE:
To investigate the effect of moxibustion on central insulin resistance related proteins of the rats suffering from diabetic cognitive decline, and analyze the underlying mechanism of moxibustion for cognition improvement.
METHODS:
Using the intraperitoneal injection of STZ combined with a high-fat diet, the rat model of diabetic cognitive decline were prepared. Twenty successfully-modeled rats were assigned randomly into a model group and a moxibustion group, 10 rats in each one. Besides, a blank group was set up with 10 rats collected. In the moxibustion group, suspending moxibustion was applied to "Baihui" (GV20), "Shenting" (GV24) and "Dazhui" (GV14) at the same time, 20 min in each intervention, once a day, and 6 interventions were delivered weekly and the duration of treatment was consecutive 4 weeks. The random blood glucose was measured using glucometer, and the learning-memory ability was detected by water maze test. HE staining was used to observe the morphology of neurons in the hippocampal tissue, real-time PCR assay was to detect mRNA expression of insulin receptor substrate 1 (IRS1), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in the hippocampal tissue. The Western blot method was employed to detect the protein expression of IRS1, PI3K, AKT, phosphorylated IRS1 (p-IRS1), phosphorylated PI3K (p-PI3K) and phosphorylated AKT (p-AKT) in the hippocampal tissue, and the ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT was calculated separately. The immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT was measured using immunofluorescence.
RESULTS:
Compared with the blank group, the rats of the model group exhibited higher random blood glucose (P<0.001), longer escape latency (P<0.001), severe pathological damage in the hippocampus, lower mRNA expression of IRS1, PI3K, and AKT (P<0.001), reduced ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT (P<0.001), and declined immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT in the hippocampal tissue (P<0.001). In comparison with the model group, for the rats of the moxibustion group, the random blood glucose decreased (P<0.05), the escape latency was shortened (P<0.01), the hippocampal pathological damage was attenuated, the mRNA expression of IRS1, PI3K and AKT increased (P<0.01), the ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT was elevated (P<0.01, P<0.05), and the immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT in the hippocampal tissue was strengthened (P<0.01, P<0.05).
CONCLUSION
In diabetic rats experiencing cognitive decline, moxibustion can enhance the learning-memory ability, which may be attributed to modulating the protein expression of IRS1, PI3K, and AKT, and their phosphorylation, activating insulin signal transduction, and reducing central insulin resistance.
Animals
;
Moxibustion
;
Insulin Resistance
;
Rats
;
Male
;
Insulin Receptor Substrate Proteins/genetics*
;
Rats, Sprague-Dawley
;
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Cognitive Dysfunction/genetics*
;
Diabetes Mellitus, Experimental/therapy*
;
Hippocampus/metabolism*
;
Acupuncture Points
;
Phosphatidylinositol 3-Kinases/genetics*
2.Moxibustion at different temperatures for cognitive impairment in type 2 diabetes mellitus: a randomized controlled trial.
Yan WEI ; Yuhao QU ; Aihong YUAN ; Lele ZHANG ; Min YE ; Qunwei LI ; Hongyu XIE
Chinese Acupuncture & Moxibustion 2025;45(9):1233-1240
OBJECTIVE:
To observe the effects of moxibustion at different temperatures on cognitive function and blood glucose levels in patients with cognitive impairment associated with type 2 diabetes mellitus (T2DM).
METHODS:
A total of 66 T2DM patients with cognitive impairment were randomly assigned to a high-temperature group (22 cases, 1 case dropped out, 1 case was eliminated), a medium-temperature group (22 cases, 2 cases were eliminated), and a low-temperature group (22 cases, 2 cases were eliminated). All groups received moxibustion at Baihui (GV20), Dazhui (GV14), and Shenting (GV24) based on their existing glycemic control treatment. Moxibustion temperatures were maintained at 44-46 ℃ (high-temperature group), 41-43 ℃ (medium-temperature group), and 38-40 ℃ (low-temperature group), respectively, for 20 min per session, every other day, 3 times a week for 3 months. The Montreal cognitive assessment (MoCA) score, mini-mental state examination (MMSE) score, short-term memory (STM) accuracy and average reaction time, Rey-Osterrieth complex figure (ROCF) score, fasting plasma glucose (FPG), and glycated hemoglobin (HbA1c) were assessed before and after treatment. Clinical efficacy was evaluated after treatment.
RESULTS:
After treatment, MMSE scores in all three groups were higher than those before treatment (P<0.05). In the high-temperature group, the total MoCA score and the scores of visuospatial and executive function, memory and delayed recall, attention, naming, language, and abstraction were higher than those before treatment (P<0.05); the scores of ROCF copy, immediate recall, and delayed recall were higher than those before treatment (P<0.05); the HbA1c level was lower than that before treatment (P<0.05). In the medium-temperature group, the total MoCA score and the scores of memory and delayed recall, attention, and language were higher than those before treatment (P<0.05). STM accuracy was higher than before treatment (P<0.05), and STM average reaction time was shorter than before treatment (P<0.05) in both the high-temperature and medium-temperature groups. After treatment, the total MoCA score and the scores of visuospatial and executive function, memory and delayed recall, attention, and language in the high-temperature group were higher than those in the medium- and low-temperature groups (P<0.05); MMSE score, STM accuracy, and ROCF immediate recall and delayed recall scores were higher than those in the medium- and low-temperature groups (P<0.05); STM average reaction time was shorter than that in the medium- and low-temperature groups (P<0.05); HbA1c level was lower than that in the low-temperature group (P<0.05). The total MoCA score, attention score, and MMSE score in the medium-temperature group were higher than those in the low-temperature group (P<0.05), and STM average reaction time was shorter than that in the low-temperature group (P<0.05). There were no statistically significant differences in FPG within or between the three groups before and after treatment (P>0.05). The total effective rates were 75.0% (15/20) in the high-temperature group, 50.0% (10/20) in the medium-temperature group, and 15.0% (3/20) in the low-temperature group; the total effective rate in the high-temperature group was significantly higher than that in the low-temperature group (P<0.05).
CONCLUSION
Moxibustion at different temperatures has a dose-effect relationship in treating cognitive impairment in T2DM patients. A temperature range of 44-46 ℃ is more effective in improving cognitive function and stabilizing average blood glucose levels over 2-3 months.
Humans
;
Diabetes Mellitus, Type 2/therapy*
;
Male
;
Female
;
Moxibustion
;
Middle Aged
;
Aged
;
Cognitive Dysfunction/psychology*
;
Cognition
;
Temperature
;
Blood Glucose/metabolism*
;
Adult
;
Acupuncture Points
3.Oxidative stress in diabetes mellitus and its complications: From pathophysiology to therapeutic strategies.
Xingyu CHEN ; Na XIE ; Lixiang FENG ; Yujing HUANG ; Yuyao WU ; Huili ZHU ; Jing TANG ; Yuanyuan ZHANG
Chinese Medical Journal 2025;138(1):15-27
Oxidative stress due to aberrant metabolism is considered as a crucial contributor to diabetes and its complications. Hyperglycemia and hyperlipemia boost excessive reactive oxygen species generation by elevated mitochondrial respiration, increased nicotinamide adenine dinucleotide phosphate oxidase activity, and enhanced pro-oxidative processes, including protein kinase C pathways, hexosamine, polyol, and advanced glycation endproducts, which exacerbate oxidative stress. Oxidative stress plays a significant role in the onset of diabetes and its associated complications by impairing insulin production, increasing insulin resistance, maintaining hyperglycemic memory, and inducing systemic inflammation. A more profound comprehension of the molecular processes that link oxidative stress to diabetes is crucial to new preventive and therapeutic strategies. Therefore, this review discusses the mechanisms underlying how oxidative stress contributes to diabetes mellitus and its complications. We also summarize the current approaches for prevention and treatment by targeting the oxidative stress pathways in diabetes.
Oxidative Stress/physiology*
;
Humans
;
Diabetes Mellitus/physiopathology*
;
Diabetes Complications/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Glycation End Products, Advanced/metabolism*
;
Animals
4.Comparison of glucose fluctuation between metformin combined with acarbose or sitagliptin in Chinese patients with type 2 diabetes: A multicenter, randomized, active-controlled, open-label, parallel design clinical trial.
Xiaoling CAI ; Suiyuan HU ; Chu LIN ; Jing WU ; Junfen WANG ; Zhufeng WANG ; Xiaomei ZHANG ; Xirui WANG ; Fengmei XU ; Ling CHEN ; Wenjia YANG ; Lin NIE ; Linong JI
Chinese Medical Journal 2025;138(9):1116-1125
BACKGROUND:
Alpha-glucosidase inhibitors or dipeptidyl peptidase-4 inhibitors are both hypoglycemia agents that specifically impact on postprandial hyperglycemia. We compared the effects of acarbose and sitagliptin add on to metformin on time in range (TIR) and glycemic variability (GV) in Chinese patients with type 2 diabetes mellitus through continuous glucose monitoring (CGM).
METHODS:
This study was a randomized, open-label, active-con-trolled, parallel-group trial conducted at 15 centers in China from January 2020 to August 2022. We recruited patients with type 2 diabetes aged 18-65 years with body mass index (BMI) within 19-40 kg/m 2 and hemoglobin A1c (HbA1c) between 6.5% and 9.0%. Eligible patients were randomized to receive either metformin combined with acarbose 100 mg three times daily or metformin combined with sitagliptin 100 mg once daily for 28 days. After the first 14-day treatment period, patients wore CGM and entered another 14-day treatment period. The primary outcome was the level of TIR after treatment between groups. We also performed time series decomposition, dimensionality reduction, and clustering using the CGM data.
RESULTS:
A total of 701 participants received either acarbose or sitagliptin treatment in combination with metformin. There was no statistically significant difference in TIR between the two groups. Time below range (TBR) and coefficient of variation (CV) levels in acarbose users were significantly lower than those in sitagliptin users. Median (25th percentile, 75th percentile) of TBR below target level <3.9 mmol/L (TBR 3.9 ): Acarbose: 0.45% (0, 2.13%) vs . Sitagliptin: 0.78% (0, 3.12%), P = 0.042; Median (25th percentile, 75th percentile) of TBR below target level <3.0 mmol/L (TBR 3.0 ): Acarbose: 0 (0, 0.22%) vs . Sitagliptin: 0 (0, 0.63%), P = 0.033; CV: Acarbose: 22.44 ± 5.08% vs . Sitagliptin: 23.96 ± 5.19%, P <0.001. By using time series analysis and clustering, we distinguished three groups of patients with representative metabolism characteristics, especially in GV (group with small wave, moderate wave and big wave). No significant difference was found in the complexity of glucose time series index (CGI) between acarbose users and sitagliptin users. By using time series analysis and clustering, we distinguished three groups of patients with representative metabolism characteristics, especially in GV.
CONCLUSIONS:
Acarbose had slight advantages over sitagliptin in improving GV and reducing the risk of hypoglycemia. Time series analysis of CGM data may predict GV and the risk of hypoglycemia.
TRIAL REGISTRATION
Chinese Clinical Trial Registry: ChiCTR2000039424.
Humans
;
Metformin/therapeutic use*
;
Sitagliptin Phosphate/therapeutic use*
;
Acarbose/therapeutic use*
;
Diabetes Mellitus, Type 2/blood*
;
Middle Aged
;
Male
;
Female
;
Adult
;
Blood Glucose/drug effects*
;
Hypoglycemic Agents/therapeutic use*
;
Aged
;
Glycated Hemoglobin/metabolism*
;
Adolescent
;
Young Adult
;
China
;
East Asian People
5.Hub biomarkers and their clinical relevance in glycometabolic disorders: A comprehensive bioinformatics and machine learning approach.
Liping XIANG ; Bing ZHOU ; Yunchen LUO ; Hanqi BI ; Yan LU ; Jian ZHOU
Chinese Medical Journal 2025;138(16):2016-2027
BACKGROUND:
Gluconeogenesis is a critical metabolic pathway for maintaining glucose homeostasis, and its dysregulation can lead to glycometabolic disorders. This study aimed to identify hub biomarkers of these disorders to provide a theoretical foundation for enhancing diagnosis and treatment.
METHODS:
Gene expression profiles from liver tissues of three well-characterized gluconeogenesis mouse models were analyzed to identify commonly differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA), machine learning techniques, and diagnostic tests on transcriptome data from publicly available datasets of type 2 diabetes mellitus (T2DM) patients were employed to assess the clinical relevance of these DEGs. Subsequently, we identified hub biomarkers associated with gluconeogenesis-related glycometabolic disorders, investigated potential correlations with immune cell types, and validated expression using quantitative polymerase chain reaction in the mouse models.
RESULTS:
Only a few common DEGs were observed in gluconeogenesis-related glycometabolic disorders across different contributing factors. However, these DEGs were consistently associated with cytokine regulation and oxidative stress (OS). Enrichment analysis highlighted significant alterations in terms related to cytokines and OS. Importantly, osteomodulin ( OMD ), apolipoprotein A4 ( APOA4 ), and insulin like growth factor binding protein 6 ( IGFBP6 ) were identified with potential clinical significance in T2DM patients. These genes demonstrated robust diagnostic performance in T2DM cohorts and were positively correlated with resting dendritic cells.
CONCLUSIONS
Gluconeogenesis-related glycometabolic disorders exhibit considerable heterogeneity, yet changes in cytokine regulation and OS are universally present. OMD , APOA4 , and IGFBP6 may serve as hub biomarkers for gluconeogenesis-related glycometabolic disorders.
Machine Learning
;
Humans
;
Computational Biology/methods*
;
Biomarkers/metabolism*
;
Diabetes Mellitus, Type 2/genetics*
;
Animals
;
Mice
;
Gluconeogenesis/physiology*
;
Gene Expression Profiling
;
Transcriptome/genetics*
;
Gene Regulatory Networks/genetics*
;
Clinical Relevance
6.Association between blood glucose indicators and metabolic diseases in the Chinese population: A national cross-sectional study.
Lijun TIAN ; Cihang LU ; Di TENG ; Weiping TENG
Chinese Medical Journal 2025;138(17):2159-2169
BACKGROUND:
Studies on the impact of blood glucose indicators on metabolism remain relatively scarce. The aim of this study was to investigate the associations between blood glucose indicators and metabolic disorders in China.
METHODS:
Data were from the Thyroid disorders, Iodine status and Diabetes Epidemiological survey (TIDE survey), which randomly selected 31 cities from 31 provinces in the Chinese mainland. A total of 68,383 participants without preexisting diabetes and have complete data on blood glucose, lipids, and blood pressure were included in the analysis. The diabetic population was divided into seven groups based on different types of elevated blood glucose levels, including fasting plasma glucose (FPG), postprandial glucose (PPG), and hemoglobin A1c (HbA1c): FPG ≥7 mmol/L; PPG ≥11.1 mmol/L; HbA1c ≥6.5%; FPG ≥7 mmol/L and PPG ≥11.1 mmol/L; FPG ≥7 mmol/L and HbA1c ≥6.5%; PPG ≥11.1 mmol/L and HbA1c ≥6.5%; FPG ≥7 mmol/L, PPG ≥11.1 mmol/L, and HbA1c ≥6.5%. The effects of each blood glucose indicator on metabolism were investigated separately. Weighted calculation was applied during the analysis, with the weighting coefficient based on the number of people corresponding to the population characteristics of each sample in the 2010 Chinese Census. A logistic regression model with restricted cubic splines (RCS) was employed to characterize the nonlinear associations of age and body mass index (BMI) with the risk of diabetes subtypes defined by distinct blood glucose indicators elevations, as well as the relationships between different blood glucose indicators (FPG, PPG, HbA1c) and the risk of metabolic disorders such as hypertension, hypertriglyceridemia, hypercholesterolemia, high low-density lipoprotein cholesterol (high LDL-C) and low high-density lipoprotein cholesterol (low HDL-C).
RESULTS:
Among individuals with diabetes, elevated PPG alone was the most common abnormality, affecting 26.96% (1382/5127) of the population. Among the seven groups with only one elevated blood glucose indicator, individuals with elevated PPG alone exhibited the highest mean levels of triglycerides (TG) at 2.11 mmol/L (95% confidence interval [CI]: 1.97-2.25 mmol/L, P = 0.004), total cholesterol (TC) at 5.26 mmol/L (95% CI: 5.18-5.33 mmol/L, P <0.001), and low-density lipoprotein cholesterol (LDL-C) at 3.12 mmol/L, (95% CI: 3.06-3.19 mmol/L, P = 0.001). Individuals with elevated PPG alone showed a high prevalence of hypertension (806/1382, 58.32%), hypertriglyceridemia (676/1382, 48.91%), hypercholesterolemia (694/1382, 50.22%), High LDL-C (525/1382, 37.94%), and Low HDL-C (364/1382, 26.34%). The association of age and BMI with the risk of diabetes revealed that the older the patient, the steeper the RCS curve for the odds ratio (OR) of diabetes with elevated PPG alone (age = 60, OR = 2.79, 95% CI [2.49-3.12], P <0.01). Similarly, as BMI increased, the RCS curve for the OR of diabetes with elevated HbA1c alone also steepened (BMI = 35, OR = 3.75, 95% CI [3.23-4.35], P <0.001). Additionally, the RCS yielded a positive association between blood glucose indicators and metabolic diseases risk. In individuals with diabetes, RCS for both the ORs of metabolic diseases (hypertension, hypertriglyceridemia, hypercholesterolemia, high LDL-C, low HDL-C) and the levels of metabolic indicators (TG, TC, LDL-C, HDL-C) revealed some inflection points within the ranges of FPG 5-6 mmol/L, PPG 6-8 mmol/L, and HbA1c 5.5-6.0%.
CONCLUSIONS
PPG is more closely related to metabolic disorders than FPG and HbA1c in people with diabetes. For patients with diabetes and metabolic disorders, it may be necessary to monitor blood glucose fluctuations within specific ranges (FPG 5-6 mmol/L, PPG 6-8 mmol/L, and HbA1c 5.5-6.0%).
Humans
;
Female
;
Cross-Sectional Studies
;
Male
;
Blood Glucose/metabolism*
;
Middle Aged
;
Glycated Hemoglobin/metabolism*
;
Adult
;
Metabolic Diseases/epidemiology*
;
Aged
;
China
;
Diabetes Mellitus/blood*
;
East Asian People
7.Diabetic vascular calcification inhibited by soluble epoxide hydrolase gene deletion via regressing NID2-mediated IGF2-ERK1/2 signaling pathway.
Yueting CAI ; Shuiqing HU ; Jingrui LIU ; Jinlan LUO ; Wenhua LI ; Jiaxin TANG ; Siyang LIU ; Ruolan DONG ; Yan YANG ; Ling TU ; Xizhen XU
Chinese Medical Journal 2025;138(20):2657-2668
BACKGROUND:
Epoxyeicosatrienoic acids (EETs), which are metabolites of arachidonic acid catalyzed by cytochrome P450 epoxygenase, are degraded into inactive dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH). Many studies have revealed that sEH gene deletion exerts protective effects against diabetes. Vascular calcification is a common complication of diabetes, but the potential effects of sEH on diabetic vascular calcification are still unknown.
METHODS:
The level of aortic calcification in wild-type and Ephx2-/- C57BL/6 diabetic mice induced with streptozotocin was evaluated by measuring the aortic calcium content through alizarin red staining, immunohistochemistry staining, and immunofluorescence staining. Mouse vascular smooth muscle cell lines (MOVAS cells) treated with β-glycerol phosphate (0.01 mol/L) plus advanced glycation end products (50 mg/L) were used to investigate the effects of sEH inhibitors or sEH knockdown and EETs on the calcification of vascular smooth muscle cells, which was detected by Western blotting, alizarin red staining, and Von Kossa staining.
RESULTS:
sEH gene deletion significantly inhibited diabetic vascular calcification by increasing levels of EETs in the aortas of mice. EETs (especially 11,12-EET and 14,15-EET) efficiently prevented the osteogenic transdifferentiation of MOVAS cells by decreasing nidogen-2 (NID2) expression. Interestingly, suppressing sEH activity by small interfering ribonucleic acid or specific inhibitors did not block osteogenic transdifferentiation of MOVAS cells induced by β-glycerol phosphate and advanced glycation end products. NID2 overexpression significantly abolished the inhibitory effect of sEH gene deletion on diabetic vascular calcification. Moreover, NID2 overexpression mediated by adeno-associated virus 9 vectors markedly increased insulin-like growth factor 2 (IGF2) and phospho-ERK1/2 expression in MOVAS cells. Overall, sEH gene knockout inhibited diabetic vascular calcification by decreasing aortic NID2 expression and, then, inactivating the downstream IGF2-ERK1/2 signaling pathway.
CONCLUSIONS
sEH gene deletion markedly inhibited diabetic vascular calcification through repressed osteogenic transdifferentiation of vascular smooth muscle cells mediated by increased aortic EET levels, which was associated with decreased NID2 expression and inactivation of the downstream IGF2-ERK1/2 signaling pathway.
Animals
;
Mice
;
Vascular Calcification/metabolism*
;
Mice, Inbred C57BL
;
Epoxide Hydrolases/metabolism*
;
Diabetes Mellitus, Experimental/genetics*
;
Male
;
Gene Deletion
;
MAP Kinase Signaling System/genetics*
;
Cell Line
;
Immunohistochemistry
;
Muscle, Smooth, Vascular/metabolism*
;
Signal Transduction/genetics*
;
Mice, Knockout
8.The impact of glycemic variability on diabetic complications and related mechanisms.
Jing-Yi LIU ; Qi AN ; Si-Qi ZHANG ; Biao YANG ; Ya-Qiong LI
Acta Physiologica Sinica 2025;77(5):925-938
Diabetes mellitus (DM) is a major global health issue, with glycated hemoglobin levels serving as the gold standard for evaluating glucose level control in DM patients. However, it has limitations in reflecting glucose oscillations (i.e. glycemic variability, GV). Increasing evidence suggests that GV is closely related to the progression of diabetes complications and patient prognosis. As people realize the importance of avoiding hypoglycemia while achieving target glycated hemoglobin levels in treatment, the clinical significance of GV becomes more obvious. This article systematically reviewed the concept and connotation of GV, summarized the latest research on its role in the complications of diabetes, and revealed the biochemical and pathophysiological abnormalities caused by excessive glycemic oscillation, aiming to provide a theoretical basis for the risk warning and early intervention of DM patients.
Humans
;
Blood Glucose/metabolism*
;
Diabetes Complications/physiopathology*
;
Glycated Hemoglobin/metabolism*
;
Hypoglycemia
;
Diabetes Mellitus, Type 2/complications*
9.Mechanism of Huanglian Jiedu Decoction in treatment of type 2 diabetes mellitus based on intestinal flora.
Xue HAN ; Qiu-Mei TANG ; Wei WANG ; Guang-Yong YANG ; Wei-Yi TIAN ; Wen-Jia WANG ; Ping WANG ; Xiao-Hua TU ; Guang-Zhi HE
China Journal of Chinese Materia Medica 2025;50(1):197-208
The effect of Huanglian Jiedu Decoction on the intestinal flora of type 2 diabetes mellitus(T2DM) was investigated using 16S rRNA sequencing technology. Sixty rats were randomly divided into a normal group(10 rats) and a modeling group(50 rats). After one week of adaptive feeding, a high-fat diet + streptozotocin was given for modeling, and fasting blood glucose >16.7 mmol·L~(-1) was considered a sign of successful modeling. The modeling group was randomly divided into the model group, high-, medium-, and low-dose groups of Huanglian Jiedu Decoction, and metformin group. After seven days of intragastric treatment, the feces, colon, and pancreatic tissue of each group of rats were collected, and the pathological changes of the colon and pancreatic tissue of each group were observed by hematoxylin-eosin staining. The changes in the intestinal flora structure of each group were observed by the 16S rRNA sequencing method. The results showed that compared with the model group, the high-, medium-, and low-dose of Huanglian Jiedu Decoction reduced fasting blood glucose levels to different degrees and showed no significant changes in body weight. The number of islet cells increased, and intestinal mucosal damage attenuated. Alpha diversity analysis revealed that Huanglian Jiedu Decoction reduced the abundance and diversity of intestinal flora in rats with T2DM; at the phylum level, low-and mediam-dose of Huanglian Jiedu Decoction reduced the abundance of Bacteroidota, Proteobacteria, and Desulfobacterota and increased the abundance of Firmicute and Bacteroidota/Firmicutes, while the high-dose of Huanglian Jiedu Decoction increased the relative abundance of Proteobacteria and Bacteroidota/Firmicutes ratio, and decreaseal the relative; abundance of Firmicute; at the genus level, Huanglian Jiedu Decoction increased the relative abundance of Allobaculum, Blautia, and Lactobacillus; LEfse analysis revealed that the biomarker of low-and medium-dose groups of Huanglian Jiedu Decoction was Lactobacillus, and the structure of the intestinal flora of the low-dose group of Huanglian Jiedu Decoction was highly similar to that of the metformin group. PICRUSt2 function prediction revealed that Huanglian Jiedu Decoction mainly affected carbohydrate and amino acid metabolic pathways. It suggested that Huanglian Jiedu Decoction could reduce fasting blood glucose and increase the number of islet cells in rats with T2DM, and its mechanism of action may be related to increasing the abundance of short-chain fatty acid-producing strains and Lactobacillus and affecting carbohydrate and amino acid metabolic pathways.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Diabetes Mellitus, Type 2/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Humans
;
Bacteria/drug effects*
;
Blood Glucose/metabolism*
10.Research progress on dihydrochalcones from Lithocarpus litseifolius extracts in treatment of type 2 diabetes mellitus and its complications.
Yun-Qin WEI ; Yu-Lan CAI ; Yan YANG ; Shang-Heng FAN ; Lin-Li WU ; Gui-Lan NIE
China Journal of Chinese Materia Medica 2025;50(3):658-671
Type 2 diabetes mellitus(T2DM) is a prevalent metabolic and endocrine disorder. Long-term hyperglycemia can lead to severe chronic complications, imposing substantial economic burdens on both society and patients. Despite the availability of various hypoglycemic agents for clinical use, these agents often fail to meet the therapeutic needs of T2DM and its complications. Consequently, there is an urgent need for novel therapeutic strategies and drugs. Lithocarpus litseifolius(L. litseifolius), commonly referred to as "cordyceps on trees", has a long history of use in traditional medicine and can be applied in tea, sugar, and medicine. Research indicates that L. litseifolius extracts are rich in dihydrochalcones, including trilobatin, phloridzin, and phloretin, which exhibit a range of pharmacological activities, such as anti-inflammatory, antioxidant, hypoglycemic, hypolipidemic, hepatoprotective, and cardioprotective effects. These properties suggest potential applications in the treatment of T2DM and its complications. This review systematically compiled and organized the relevant literature from the past decade on dihydrochalcones(trilobatin, phloridzin, and phloretin) from L. litseifolius extracts. It highlighted recent research progress regarding their role in treating T2DM and its complications through mechanisms such as reducing insulin resistance, regulating glucose transport, improving glucose and lipid metabolism, modulating enzyme activity, regulating gut microbiota, and alleviating inflammation and oxidative damage. The purpose of this review is to provide a reference and basis for future research on the prevention and treatment of T2DM and its complications using dihydrochalcones(trilobatin, phloridzin, and phloretin) from L. litseifolius extracts.
Chalcones/chemistry*
;
Diabetes Mellitus, Type 2/metabolism*
;
Humans
;
Animals
;
Elaeocarpaceae/chemistry*
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypoglycemic Agents/chemistry*
;
Plant Extracts/chemistry*

Result Analysis
Print
Save
E-mail