1.Status of Clinical Practice Guideline Information Platforms
Xueqin ZHANG ; Yun ZHAO ; Jie LIU ; Long GE ; Ying XING ; Simeng REN ; Yifei WANG ; Wenzheng ZHANG ; Di ZHANG ; Shihua WANG ; Yao SUN ; Min WU ; Lin FENG ; Tiancai WEN
Medical Journal of Peking Union Medical College Hospital 2025;16(2):462-471
Clinical practice guidelines represent the best recommendations for patient care. They are developed through systematically reviewing currently available clinical evidence and weighing the relative benefits and risks of various interventions. However, clinical practice guidelines have to go through a long translation cycle from development and revision to clinical promotion and application, facing problems such as scattered distribution, high duplication rate, and low actual utilization. At present, the clinical practice guideline information platform can directly or indirectly solve the problems related to the lengthy revision cycles, decentralized dissemination and limited application of clinical practice guidelines. Therefore, this paper systematically examines different types of clinical practice guideline information platforms and investigates their corresponding challenges and emerging trends in platform design, data integration, and practical implementation, with the aim of clarifying the current status of this field and providing valuable reference for future research on clinical practice guideline information platforms.
3.Efficacy of Differential Dosage of Pueraria in Gegen Qinliantang on Acute Enteritis Model in Mice
Ruiying ZHANG ; Ping WANG ; Di ZHANG ; Hongfa CHENG ; Ying ZHANG ; Zhu DENG ; Hui FENG ; Min LIU ; Yang TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):197-204
ObjectiveTo investigate whether there are differences in the efficacy of Gegen Qinliantang with different contents of Puerariae Lobatae Radix on the acute enteritis (AE) model mice and provide a scientific basis for the interpretation of Gegen Qinliantang in the treatment of "Xie Re Li". MethodsA total of 112 male BALB/c mice were randomly divided into a blank group,model group,single Puerariae Lobatae Radix group,non-Puerariae Lobatae Radix group,regular dose Gegen Qinliantang group (regular dose group),half-dose Puerariae Lobatae Radix group,and doubled-dose Puerariae Lobatae Radix group, with 16 mice in each group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of the colon tissue. Western blot was employed to detect the expression of ZO-1 (a protein in the tight junction) and Occludin in the colon tissue, as well as the changes of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). ResultsCompared with the blank group,the DAI scores of the mice in the model group were significantly higher (P<0.05),and the histopathological sections of their colon tissues showed mucosal damage,glandular atrophy,disordered arrangement,and a large number of inflammatory cells infiltration,and the expression of ZO-1 and Occludin proteins in their colon tissues was significantly down-regulated (P<0.05,P<0.01). The expression of inflammatory factors TNF-α and IL-1β was significantly up-regulated (P<0.05,P<0.01). Compared with the model group,the DAI scores of mice in all dosing groups decreased significantly (P<0.05),with the most significant effect in the regular dose group. After 7 d of drug administration,the regular dose group had the best impact on the repair of colonic mucosa in the AE mouse model. The regular dose group significantly down-regulated the expression of TNF-α (P<0.05) and significantly up-regulated the expression of ZO-1 protein (P<0.05). The doubled-dose Puerariae Lobatae Radix group significantly down-regulated the expression of IL-1β protein (P<0.01),and there was no significant difference between all dosing groups and the model group in terms of the expression of Occludin protein. After 14 d of drug administration,the best effect on the repair of colonic mucosa in the AE mouse model was observed in the doubled dose Puerariae Lobatae Radix group. All groups except the non-Puerariae Lobatae Radix group significantly down-regulated the expression of TNF-α (P<0.01). Meanwhile,the regular dose group and doubled-dose Puerariae Lobatae Radix group significantly elevated the expression level of Occludin protein (P<0.01). The doubled-dose Puerariae Lobatae Radix group also significantly inhibited the expression of IL-1β protein (P<0.05) and up-regulated ZO-1 protein expression (P<0.05). ConclusionGegen Qinliantang can reduce the pathological damage of colon tissue, protect the barrier function and structure of intestinal epithelial cells, and reduce the expression of inflammatory factors, so as to achieve the therapeutic effect of AE model mice. When comparing the therapeutic efficacy of Gegen Qinliantang containing different Gegen contents, Gegen Qinliantang with the proportion of the original formula of Zhongjing was the most effective in AE model mice.
4.Efficacy of Differential Dosage of Pueraria in Gegen Qinliantang on Acute Enteritis Model in Mice
Ruiying ZHANG ; Ping WANG ; Di ZHANG ; Hongfa CHENG ; Ying ZHANG ; Zhu DENG ; Hui FENG ; Min LIU ; Yang TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):197-204
ObjectiveTo investigate whether there are differences in the efficacy of Gegen Qinliantang with different contents of Puerariae Lobatae Radix on the acute enteritis (AE) model mice and provide a scientific basis for the interpretation of Gegen Qinliantang in the treatment of "Xie Re Li". MethodsA total of 112 male BALB/c mice were randomly divided into a blank group,model group,single Puerariae Lobatae Radix group,non-Puerariae Lobatae Radix group,regular dose Gegen Qinliantang group (regular dose group),half-dose Puerariae Lobatae Radix group,and doubled-dose Puerariae Lobatae Radix group, with 16 mice in each group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of the colon tissue. Western blot was employed to detect the expression of ZO-1 (a protein in the tight junction) and Occludin in the colon tissue, as well as the changes of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). ResultsCompared with the blank group,the DAI scores of the mice in the model group were significantly higher (P<0.05),and the histopathological sections of their colon tissues showed mucosal damage,glandular atrophy,disordered arrangement,and a large number of inflammatory cells infiltration,and the expression of ZO-1 and Occludin proteins in their colon tissues was significantly down-regulated (P<0.05,P<0.01). The expression of inflammatory factors TNF-α and IL-1β was significantly up-regulated (P<0.05,P<0.01). Compared with the model group,the DAI scores of mice in all dosing groups decreased significantly (P<0.05),with the most significant effect in the regular dose group. After 7 d of drug administration,the regular dose group had the best impact on the repair of colonic mucosa in the AE mouse model. The regular dose group significantly down-regulated the expression of TNF-α (P<0.05) and significantly up-regulated the expression of ZO-1 protein (P<0.05). The doubled-dose Puerariae Lobatae Radix group significantly down-regulated the expression of IL-1β protein (P<0.01),and there was no significant difference between all dosing groups and the model group in terms of the expression of Occludin protein. After 14 d of drug administration,the best effect on the repair of colonic mucosa in the AE mouse model was observed in the doubled dose Puerariae Lobatae Radix group. All groups except the non-Puerariae Lobatae Radix group significantly down-regulated the expression of TNF-α (P<0.01). Meanwhile,the regular dose group and doubled-dose Puerariae Lobatae Radix group significantly elevated the expression level of Occludin protein (P<0.01). The doubled-dose Puerariae Lobatae Radix group also significantly inhibited the expression of IL-1β protein (P<0.05) and up-regulated ZO-1 protein expression (P<0.05). ConclusionGegen Qinliantang can reduce the pathological damage of colon tissue, protect the barrier function and structure of intestinal epithelial cells, and reduce the expression of inflammatory factors, so as to achieve the therapeutic effect of AE model mice. When comparing the therapeutic efficacy of Gegen Qinliantang containing different Gegen contents, Gegen Qinliantang with the proportion of the original formula of Zhongjing was the most effective in AE model mice.
5.The neurophysiological mechanisms of exercise-induced improvements in cognitive function.
Jian-Xiu LIU ; Bai-Le WU ; Di-Zhi WANG ; Xing-Tian LI ; Yan-Wei YOU ; Lei-Zi MIN ; Xin-Dong MA
Acta Physiologica Sinica 2025;77(3):504-522
The neurophysiological mechanisms by which exercise improves cognitive function have not been fully elucidated. A comprehensive and systematic review of current domestic and international neurophysiological evidence on exercise improving cognitive function was conducted from multiple perspectives. At the molecular level, exercise promotes nerve cell regeneration and synaptogenesis and maintains cellular development and homeostasis through the modulation of a variety of neurotrophic factors, receptor activity, neuropeptides, and monoamine neurotransmitters, and by decreasing the levels of inflammatory factors and other modulators of neuroplasticity. At the cellular level, exercise enhances neural activation and control and improves brain structure through nerve regeneration, synaptogenesis, improved glial cell function and angiogenesis. At the structural level of the brain, exercise promotes cognitive function by affecting white and gray matter volumes, neural activation and brain region connectivity, as well as increasing cerebral blood flow. This review elucidates how exercise improves the internal environment at the molecular level, promotes cell regeneration and functional differentiation, and enhances the brain structure and neural efficiency. It provides a comprehensive, multi-dimensional explanation of the neurophysiological mechanisms through which exercise promotes cognitive function.
Animals
;
Humans
;
Brain/physiology*
;
Cognition/physiology*
;
Exercise/physiology*
;
Nerve Regeneration/physiology*
;
Neuronal Plasticity/physiology*
6.Research progress on chemical constituents, pharmacological effects of Anemarrhenae Rhizoma and predictive analysis of its quality markers.
Wen-Jun WANG ; Ze-Min YANG ; An LIU ; Li-Dong SHAO ; Jin-Tang CHENG
China Journal of Chinese Materia Medica 2025;50(4):934-945
Anemarrhenae Rhizoma is bitter, sweet, and cold in nature, and has the effects of clearing heat, dispelling fire, nourishing Yin, and moisturizing dryness. It is associated with the lung, stomach, and kidney meridians, and is mainly distributed in the northwestern and northern regions of China. Modern research has shown that Anemarrhenae Rhizoma contains various chemical active constituents, including steroidal saponins, flavonoids, polysaccharides, lignans, volatile oils, and alkaloids. These constituents exhibit pharmacological effects such as anti-tumor, hypoglycemic, anti-inflammatory, and neuroprotective activities. However, there have been few comprehensive summaries of Anemarrhenae Rhizoma in recent years, which has limited its in-depth research and development. The complexity of traditional Chinese medicine constituents, along with their quality and efficacy, is easily influenced by processing, preparation, and the growing environment and resource distribution. This paper summarizes the resources, chemical constituents, and pharmacological effects of Anemarrhenae Rhizoma, and predicts its quality markers(Q-markers) from several aspects, including the specificity of chemical composition, properties related to preparation and active ingredients, measurability of chemical components, compounding environment, construction of the ″active ingredient-target″ network pathway, and differences in active ingredient content from different origins and parts. These predicted Q-markers may provide a basis for improving the quality evaluation system of Anemarrhenae Rhizoma.
Anemarrhena/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Rhizome/chemistry*
;
Humans
;
Animals
;
Quality Control
7.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats
8.Original plants, production areas, and spread of Sanqi: based on historical materials of the Ming and Qing Dynasties.
Mei WANG ; Min-Zhen YIN ; Hua-Sheng PENG
China Journal of Chinese Materia Medica 2025;50(11):2938-2944
Sanqi is first recorded in the Compendium of Materia Medica(Ben Cao Gang Mu) in the Ming Dynasty. During the Ming and Qing Dynasties, Sanqi, as a precious Dao-di herb, was successively spread and introduced for cultivation. This study verified the germplasm resources, production areas, and spread of Sanqi in the Ming and Qing Dynasties by systematically reviewing the historical materials, such as materia medica works and local chronicles, and the modern distribution of production areas. In the Ming and Qing Dynasties, the original plants of Sanqi included Panax notoginseng, P. japonicus, P. bipinnatifidus, P. zingiberensis, P. stipuleanatus, and Gynura japonica. Among them, the production area of P. notoginseng has changed. From 1578 to 1593, the main production areas of P. notoginseng were Nandan county, Hechi city in Guangxi Zhuang autonomous region and Guangnan county and Funing county, Wenshan prefecture in Yunnan province. From 1683 to 1755, the production areas of P. notoginseng additionally included Yizhou district, Tian'e county, and Huanjiang county in Hechi city, and Tianyang district and Tiandong county in Baise city, Xincheng county and Gongcheng county in Guangxi Zhuang autonomous region. From 1765 to 1892, the production areas additionally included Youjiang district, Debao county, Napo county, and Jingxi city in Baise city, and Tiandeng county in Guangxi Zhuang autonomous region, and Wenshan city, Malipo county, Yanshan county, Xichou county, and Maguan county in Wenshan prefecture, and Baoshan city, Dali prefecture, Lincang city, Honghe prefecture, Mangshi city, and Lushui city in Yunnan province. During the Wanli period of the Ming Dynasty, Sanqi was introduced to Zhejiang province. During the Qianlong period of the Qing Dynasty, it was introduced to Fujian province. During the Daoguang period of the Qing Dynasty, it was introduced to Hunan province. By comprehensively reviewing the materia medica works, local chronicles, and novel historical materials, this study restores the development history of the Sanqi industry in the Ming and Qing Dynasties. Historical data show that the introduction of Dao-di herbs should consider the biological characteristics of medicinal plants and avoid blind introduction.
China
;
Drugs, Chinese Herbal/history*
;
History, 17th Century
;
History, 16th Century
;
Plants, Medicinal/chemistry*
;
Medicine, Chinese Traditional/history*
;
History, 18th Century
9.Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq.
Heng WANG ; Ang WU ; Meng-Chen YANG ; Di ZHOU ; Xiyang CHEN ; Zhifei SHI ; Yiqun ZHANG ; Yu-Xin LIU ; Kai CHEN ; Xiaosong WANG ; Xiao-Fang CHENG ; Baodan HE ; Yutao FU ; Lan KANG ; Yujun HOU ; Kun CHEN ; Shan BIAN ; Juan TANG ; Jianhuang XUE ; Chenfei WANG ; Xiaoyu LIU ; Jiejun SHI ; Shaorong GAO ; Jia-Min ZHANG
Protein & Cell 2025;16(11):932-952
Gene regulation relies on the precise binding of transcription factors (TFs) at regulatory elements, but simultaneously detecting hundreds of TFs on chromatin is challenging. We developed cFOOT-seq, a cytosine deaminase-based TF footprinting assay, for high-resolution, quantitative genome-wide assessment of TF binding in both open and closed chromatin regions, even with small cell numbers. By utilizing the dsDNA deaminase SsdAtox, cFOOT-seq converts accessible cytosines to uracil while preserving genomic integrity, making it compatible with techniques like ATAC-seq for sensitive and cost-effective detection of TF occupancy at the single-molecule and single-cell level. Our approach enables the delineation of TF footprints, quantification of occupancy, and examination of chromatin influences on TF binding. Notably, cFOOT-seq, combined with FootTrack analysis, enables de novo prediction of TF binding sites and tracking of TF occupancy dynamics. We demonstrate its application in capturing cell type-specific TFs, analyzing TF dynamics during reprogramming, and revealing TF dependencies on chromatin remodelers. Overall, cFOOT-seq represents a robust approach for investigating the genome-wide dynamics of TF occupancy and elucidating the cis-regulatory architecture underlying gene regulation.
Transcription Factors/genetics*
;
Humans
;
Chromatin/genetics*
;
Animals
;
Binding Sites
;
Mice
;
DNA Footprinting/methods*
10.Antitumor Study of Neoantigen-reactive T Cells Co-expressing IL-7 and CCL19 in Mouse Lung Cancer
WU DI ; LI CHENHUI ; WANG YAN ; HE ZHENGQIANG ; JIN CHANG'E ; GUO MIN ; CHEN RONGCHANG ; ZHOU CHENGZHI
Chinese Journal of Lung Cancer 2024;27(7):504-513
Background and objective Neoantigen reactive T cell(NRT)has the ability to inhibit the growth of tumors expressing specific neoantigens.However,due to the difficult immune infiltration and the inhibition of tumor micro en-vironment,the therapeutic effect of NRT in solid tumors is limited.In this study,we designed NRT cells(7×19 NRT)that can express both interleukin-7(IL-7)and chemokine C-C motif ligand 19(CCL19)in mouse lung cancer cells,and evaluated the difference in anti-tumor effect between 7×19 NRT cells and conventional NRT cells.Methods We performed next-generation sequencing and neoantigen prediction for mouse Lewis lung carcinoma(LLC),prepared RNA vaccine,cultured NRT cells,constructed retroviral vectors encoding IL-7 and CCL19,transduced NRT cells and IL-7 and CCL19 were successfully ex-pressed,and 7×19 NRT was successfully obtained.The anti-tumor effect was evaluated in vivo and in vitro in mice.Results The 7×19 NRT cells significantly enhanced the proliferation and invasion ability of T cells by secreting IL-7 and CCL19,achieved significant tumor inhibition in the mouse lung cancer and extended the survival period of mice.The T cell infiltration into tumor tissue and the necrosis of tumor tissue increased significantly after 7×19 NRT treatment.In addition,both 7×19 NRT treatment and conventional NRT treatment were safe.Conclusion The anti-solid tumor ability of NRT cells is significantly enhanced by the arming of IL-7 and CCL19,which is a safe and effective genetic modification of NRT.

Result Analysis
Print
Save
E-mail