1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Herbal Textual Research on Dioscoreae Hypoglaucae Rhizoma, Dioscoreae Spongiosae Rhizoma, Smilacis Chinae Rhizoma and Smilacis Glabrae Rhizoma in Famous Classical Formulas
Li LU ; Yichen YANG ; Erhuan WANG ; Hui CHANG ; Li AN ; Shibao WANG ; Cunde MA ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):218-247
This article systematically reviews and verifies the medicinal materials of Dioscoreae Hypoglaucae Rhizoma(DHR), Dioscoreae Spongiosae Rhizoma(DSR), Smilacis Chinae Rhizoma(SCR) and Smilacis Glabrae Rhizoma(SGR) from the aspects of name, origin, producing area, quality, harvesting, processing and efficacy by consulting historical literature, in order to provide reference for the development and utilization of famous classical formulas containing the four medicinal materials. DHR, DSR, SCR and SGR have a long history of application as medicinal materials. However, due to their similar growth environment and medicinal properties, as well as their functions of promoting dampness, dispelling wind and removing numbness, there have been instances of homonymous foreign objects and homonymous synonyms throughout history, resulting in confusion of the origin. Therefore, it is necessary to conduct comparative analysis and systematic research for clarifying the historical development and changes of the four, in order to provide a basis for safe and effective medication. According to research, Bixie was first recorded in Shennong Bencaojing and has been historically known as Baizhi, Chijie, Zhumu, and other aliases. From ancient times to the mid-20th century, there has always been a situation where the rhizomes of Dioscorea plants and Smilax plants, and even the rhizomes of Heterosmilax plants, were mixed together to be used as medicinal herbs for Bixie. However, since the Tang dynasty, it has been clearly advocated that the rhizomes of Dioscorea plants have excellent quality and have been the mainstream throughout history. The 2020 edition of Chinese Pharmacopoeia categorized it into two types of medicinal herbs(DHR and DSR). Among them, the origin of DHR is the dry rhizomes of Dioscorea hypoglauca, and the origins of DSR are the dry rhizomes of D. spongiosa and D. futschauensis. In ancient times, due to different types, the corresponding production areas of DHR and DSR were also different. Nowadays, They are mainly produced in the southern region of the Yangtze River. Since the Tang dynasty, the quality of Bixie has been characterized by its white color and soft nature. In modern times, it has been summarized that those with white color, large and thin pieces, powdery texture, tough and elastic texture, and neat and unbreakable are the best. The harvesting times of DHR and DSR are in spring or autumn, with the best quality harvested in autumn. The mainstream processing methods of them are slicing and then using the raw products or wine-processed products. SCR was first recorded in Mingyi Bielu and has been known as Jinganggen, Tielingjiao, Tieshuazi, and other aliases in history. The mainstream source is the dry rhizomes of Smilax china in the past dynasties, with the best quality being those that are tough and rich in powder. The harvesting time is from the late autumn to the following spring, and the main processing method throughout history has been slicing for raw use. SGR was first recorded under the item of Yuyuliang in Variorum of Shennong's Classic of Materia Medica. It was listed as an independent medicinal material from Bencao Gangmu. In history, there were such aliases as Cao Yuyuliang, Lengfantuan, Xianyiliang, Tubixie, etc. The main source of the past dynasties was dry rhizomes of S. glabra. In history, there have also been instances of multiple plants belonging to the same genus, and even cases of mixing the rhizomes of plants in the genus Heterosmilax. It is mainly produced in Guangdong, Hunan, Hubei, Zhejiang, Sichuan, Anhui and other regions, its quality has been summarized as large in size, powdery in texture, with few veins, and light brown in cross-section since modern times. The harvesting time is in spring or autumn, and the main processing method throughout history has been slicing for raw use. DHR, DSR, SCR and SGR all have the effects of promoting dampness, dispelling wind, relieving rheumatism and detoxifying. However, their detoxification abilities are ranked as follows:SGR>SCR>Bixie(DHR and DSR). Especially for the treatment of limb spasms, arthralgia and myalgia, scrofula, and scabies caused by syphilis and mercury poisoning, SGR has a unique effect. Based on the research results, DHR is recommended to develop the famous classical formulas containing Bixie as the first choice for medicinal herbs. It should be harvested in autumn, sliced thinly while fresh, and processed according to the requirements of the famous classical formulas, without any requirements for raw use. Selecting the rhizomes of S. china, harvested in late autumn, and thinly sliced while fresh. If there are no special processing requirements in the formulas, use it raw. Selecting the rhizomes of S. glabra, it is harvested in autumn and thinly sliced while fresh. If there are no special processing requirements in the formulas, raw products can be used.
4.Herbal Textual Research on Houttuyniae Herba in Famous Classical Formulas
Dan ZHAO ; Changgui YANG ; Chuanzhi KANG ; Chenghong XIAO ; Zhikun WU ; Hongliang MA ; Jiwen WANG ; Xiufu WAN ; Sheng WANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):250-259
This article systematically analyzes the historical evolution of the name, medicinal parts, origin, harvesting, processing and other aspects of Houttuyniae Herba(HH) by referring to the medical books, prescription books and other documents of the past dynasties, combined with the research materials related to modern and contemporary times, in order to provide a basis for the development of famous classical formulas containing this herb. In ancient literature, HH was often referred to as "Ji" and "Jicai", the name of "Ji" was first recorded in Mingyi Bielu during the Han and Wei dynasties, and the name of Yuxingcao was first seen in Lyuchanyan Bencao during the southern Song dynasty and has continued to this day. The origin of HH used throughout history is consistent, all of which are the whole herb or aboveground parts of Houttuynia cordata in Saururaceae family. HH recorded throughout history has a wide range of production areas, mostly self-produced self-marketing. In ancient times, fresh HH was often used as medicine by pounding its juice without involving any processing steps. Both fresh and dried products can be used as medicine, the fresh products uses the whole plant, while the dried products uses the aboveground parts, which are cleaned, selected and processed before use. Fresh products are harvested regardless of season, while dried products are harvested in both summer and autumn, with summer as the best. In ancient times, there were no specific requirements for the quality of HH, while in modern times, "intact stems and leaves with a strong fishy smell" are preferred. In addition, the medicinal properties of HH have undergone significant changes from ancient to modern times. In the early period, it was believed that its medicinal property was slightly warm, until the 1977 edition of Chinese Pharmacopoeia officially changed it to slightly cold. Both ancient and modern literature states that HH can be used for the treatment of carbuncle and malignant sores, Lyuchanyan Bencao for the first time introduced HH fresh juice can relieve summer heat, since Diannan Bencao recorded that it can be used for lung carbuncle, and gradually developed into the first choice for the treatment of lung carbuncle. Based on the research results, it is suggested that fresh herb or dried aboveground parts of H. cordata are used as medicine when developing famous classical formulas.
5.Lnx1 expression in cortical neurons of rats with traumatic brain injury and mechanisms involved in secondary brain injury
Yanxia MA ; Yanwei YANG ; Yuhang MA ; Di LI ; Xiaoyan WANG ; Mingming ZOU ; Shanwen WEI
Chinese Journal of Tissue Engineering Research 2025;29(1):24-30
BACKGROUND:Apoptosis plays an important role in secondary brain injury.Therefore,to explore the pathophysiological mechanism of promoting nerve cell survival after traumatic brain injury provides a new direction and theoretical basis for the prevention and treatment of traumatic brain injury. OBJECTIVE:To explore the expression changes of Lnx1 molecule in mammalian cortical neurons after brain injury and the possible mechanism involved in secondary brain injury. METHODS:Eighty adult SD rats were divided into 20 male and 20 female mice in sham operation group and 20 male and 20 female mice in traumatic brain injury group.The traumatic brain injury rat model was established by heavy falling method.At 6,12,24,48,and 72 hours after brain injury,the expression of related molecules in damaged cortical neurons was analyzed by RT-qPCR,western blot assay,and immunofluorescence staining. RESULTS AND CONCLUSION:(1)The brain tissue of traumatic brain injury group was bleeding and obvious tissue injury could be observed.Water content of brain tissue increased after traumatic brain injury.(2)Compared with the sham operation group,the expression of Lnx1 in cortical neurons after traumatic brain injury increased significantly at 24 hours after injury.(3)After traumatic brain injury,the expression of PBK and BCR protein decreased,and the pro-survival factor ctgf increased.(4)These findings suggest that after traumatic brain injury,the expression of Lnx1 is up-regulated in neurons,which may be due to the decrease of the expression of its target molecules PBK and BCR,and further promote the expression of living factor ctgf,which has a protective effect on the damaged neurons.
6.Liuwei Dihuang Pills improve chemotherapy-induced ovarian injury in mice by promoting the proliferation of female germline stem cells.
Bo JIANG ; Wen-Yan ZHANG ; Guang-di LIN ; Xiao-Qing MA ; Guo-Xia LAN ; Jia-Wen ZHONG ; Ling QIN ; Jia-Li MAI ; Xiao-Rong LI
China Journal of Chinese Materia Medica 2025;50(9):2495-2504
This study primarily investigates the effect of Liuwei Dihuang Pills on the activation and proliferation of female germline stem cells(FGSCs) in the ovaries and cortex of mice with premature ovarian failure(POF), and how it improves ovarian function. ICR mice were randomly divided into the control group, model group, Liuwei Dihuang Pills group, Liuwei Dihuang Pills double-dose group, and estradiol valerate group. A mouse model of POF was established by intraperitoneal injection of cyclophosphamide. After successful modeling, the mice were treated with Liuwei Dihuang Pills or estradiol valerate for 28 days. Vaginal smears were prepared to observe the estrous cycle and body weight. After the last administration, mice were sacrificed and sampled. Serum levels of estradiol(E_2), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and anti-Müllerian hormone(AMH) were measured by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe ovarian morphology and to count follicles at all stages to evaluate ovarian function. Immunohistochemistry was used to detect the expression of mouse vasa homolog(MVH), a marker of ovarian FGSCs. Immunofluorescence staining, using co-labeling of MVH and proliferating cell nuclear antigen(PCNA), was used to detect the expression and localization of specific markers of FGSCs. Western blot was employed to assess the protein expression of MVH, octamer-binding transcription factor 4(Oct4), and PCNA in the ovaries. The results showed that compared with the control group, the model group exhibited disordered estrous cycles, decreased ovarian index, increased atretic follicles, and a reduced number of follicles at all stages. FSH and LH levels were significantly elevated, while AMH and E_2 levels were significantly reduced, indicating the success of the model. After treatment with Liuwei Dihuang Pills or estradiol valerate, hormone levels improved, the number of atretic follicles decreased, and the number of follicles at all stages increased. MVH marker protein and PCNA proliferative protein expression in ovarian tissue also increased. These results suggest that Liuwei Dihuang Pills regulate estrous cycles and hormone disorders in POF mice, promote the proliferation of FGSCs, improve follicular development in POF mice, and enhance ovarian function.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Inbred ICR
;
Ovary/cytology*
;
Primary Ovarian Insufficiency/genetics*
;
Follicle Stimulating Hormone/metabolism*
;
Humans
;
Anti-Mullerian Hormone/blood*
;
Antineoplastic Agents/adverse effects*
;
Luteinizing Hormone/metabolism*
;
Cyclophosphamide/adverse effects*
7.Effect of medicinal parts and harvest seasons on nature-flavor correlation of plant-based Chinese materia medica.
Qi-Ao MA ; Guang YANG ; Hong-Chao WANG ; Ying LI ; Meng CHENG ; Tie-Lin WANG ; Kai SUN ; Xiu-Lian CHI
China Journal of Chinese Materia Medica 2025;50(15):4228-4237
This study selected 6 529 plant-based Chinese materia medica(PCMM) from Chinese Materia Medica as research subjects and applied a random permutation test to explore the overall correlation characteristics between nature and flavor, as well as the correlation characteristics after distinguishing different medicinal parts and harvest seasons. The results showed that the overall correlation characteristics between nature and flavor in PCMM were significantly associated in the following pairs: cold and bitter, cool and bitter, cool and astringent, cool and light, neutral and sweet, neutral and astringent, neutral and light, neutral and sour, hot and pungent, and warm and pungent. When analyzing the data by distinguishing medicinal parts and/or harvest seasons, new correlation patterns emerged, characterized by the disappearance of some significant correlations and the emergence of new ones. When analyzing by medicinal parts alone, significant correlations were found in the following cases: cold and light in leaves, cold and salty in barks, cool and sweet in fruits and seeds, neutral and pungent in whole herbs, neutral and salty in stems, and warm and salty in flowers. However, no significant correlations were found between cool and bitter in stems and other types of herbs, cool and astringent in fruits, seeds, flowers, and other types of herbs, cool and light in leaves, fruits, seeds, barks, flowers and other types of herbs, neutral and sweet in barks, neutral and astringent in whole herbs and stems, neutral and light in leaves, fruits, seeds, and flowers, neutral and sour in whole herbs, stems, barks, flowers, and other types of herbs, and hot and pungent in whole herbs, stems, flowers, and other types of herbs. When analyzing by harvest season alone, significant correlations were found in the following cases: cold and salty, and cool and sour in herbs harvested in winter, and neutral and salty in herbs harvested year-round. However, no significant correlation was found between cool and light in herbs harvested in winter. When considering both medicinal parts and harvest seasons, compared to the independent influence of medicinal parts, 14 new significant correlations emerged(e.g., the correlation between cool and bitter in stems harvested in spring), while 53 previously significant correlations disappeared(e.g., the correlation between cool and bitter in barks harvested in summer). Compared to the independent influence of harvest seasons, 11 new significant correlations appeared(e.g., the correlation between cold and light in barks harvested in autumn), while 50 previously significant correlations disappeared(e.g., the correlation between hot and pungent in leaves harvested in winter). This study is the first to reveal the influence of medicinal parts and harvest seasons on the correlation between nature and flavor in PCMM, which highlights that these two factors can interact and jointly affect nature-flavor correlations. Further research is needed to explore the underlying mechanisms. This study provides a deeper understanding of the inherent scientific connotations of herbal properties and offers a theoretical foundation for the cultivation and harvesting of PCMM.
Seasons
;
Plants, Medicinal/growth & development*
;
Drugs, Chinese Herbal/chemistry*
;
Taste
8.Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments
Qingyong ZHENG ; Donghua YANG ; Zhichao MA ; Ziyu ZHOU ; Yang LU ; Jingyu WANG ; Lina XING ; Yingying KANG ; Li DU ; Chunxiang ZHAO ; Baoshan DI ; Jinhui TIAN
Laboratory Animal and Comparative Medicine 2025;45(4):496-507
Animal experiments are an essential component of life sciences and medical research. However, the external validity and reliability of individual animal studies are frequently challenged by inherent limitations such as small sample sizes, high design heterogeneity, and poor reproducibility, which impede the effective translation of research findings into clinical practice. Systematic reviews and meta-analysis represent a key methodology for integrating existing evidence and enhancing the robustness of conclusions. Currently, however, the application of systematic reviews and meta-analysis in the field of animal experiments lacks standardized guidelines for their conduct and reporting, resulting in inconsistent quality and, to some extent, diminishing their evidence value. To address this issue, this paper aims to systematically delineate the reporting process for systematic reviews and meta-analysis of animal experiments and to propose a set of standardized recommendations that are both scientific and practical. The article's scope encompasses the entire process, from the preliminary preparatory phase [including formulating the population, intervention, comparison and outcome (PICO) question, assessing feasibility, and protocol pre-registration] to the key writing points for each section of the main report. In the core methods section, the paper elaborates on how to implement literature searches, establish eligibility criteria, perform data extraction, and assess the risk of bias, based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement, in conjunction with relevant guidelines and tools such as Animal Research: Reporting of in Vivo Experiments (ARRIVE) and a risk of bias assessment tool developed by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). For the presentation of results, strategies are proposed for clear and transparent display using flow diagrams and tables of characteristics. The discussion section places particular emphasis on how to scientifically interpret pooled effects, thoroughly analyze sources of heterogeneity, evaluate the impact of publication bias, and cautiously discuss the validity and limitations of extrapolating findings from animal studies to clinical settings. Furthermore, this paper recommends adopting the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology to comprehensively grade the quality of evidence. Through a modular analysis of the entire reporting process, this paper aims to provide researchers in the field with a clear and practical guide, thereby promoting the standardized development of systematic reviews and meta-analysis of animal experiments and enhancing their application value in scientific decision-making and translational medicine.
9.Long-Term Real-World Outcomes of Tenofovir Alafenamide in Chronic Hepatitis B: Detailed Analysis of Treatment-Naive and Experienced Patients
Yu-Xuan SONG ; Guang-Jun SONG ; Hui MA ; Bo FENG ; Yan-Di XIE
The Korean Journal of Gastroenterology 2025;85(1):64-72
Background/Aims:
This study assessed the long-term efficacy and safety of tenofovir alafenamide (TAF) in real-world settings.
Methods:
Patients who were candidates for TAF treatment and were followed up at 12-week intervals over 192 weeks were enrolled in this study.
Results:
One hundred and forty-four patients (50 treatment-naive and 94 treatment-experienced) were included in this study. The cumulative incidence rates of cirrhosis and hepatocellular carcinoma at 192 weeks were 3.9% and 0.7%, respectively. In treatment-naive patients, the rates of a virological response, HBeAg conversion, and HBsAg loss at 192 weeks were 100%, 33.3%, and 2%, respectively. The treatment-naive patients exhibited higher baseline HBsAg levels than the treatment-experienced patients (4.31 log10IU/mL vs. 3.97 log10IU/mL). A significant decrease in the HBsAg levels from the baseline was observed at 144 and 192 weeks in the treatment-naive patients (p=0.01). The baseline body mass index (BMI) <25 kg/m2 (p=0.02) and HBsAg <3.3 log10IU/mL (p=0.04) were identified as predictive factors for a decrease in HBsAg ≥0.5 log10IU/mL at 48 weeks. The eGFR levels were consistently lower in the treatment-experienced patients throughout the study. Although the treatment-naive patients showed no abnormal increases in urinary URBP, the treatment-experienced patients showed elevated urinary β2MG and NAG levels at the baseline, which decreased over the treatment course. The total cholesterol, triglyceride, and low-density lipoprotein levels were similar in both groups.
Conclusions
Prolonging the TAF treatment duration enhances the virological response rate. The decline in HBsAg levels was more significant in the treatment-naive patients than in the treatment-experienced patients. The baseline BMI <25 kg/m2 and HBsAg <3.3 log10IU/mL were predictive factors for a significant decline in HBsAg at 48 weeks. TAF has high renal safety and no significant impact on lipid levels.
10.Long-Term Real-World Outcomes of Tenofovir Alafenamide in Chronic Hepatitis B: Detailed Analysis of Treatment-Naive and Experienced Patients
Yu-Xuan SONG ; Guang-Jun SONG ; Hui MA ; Bo FENG ; Yan-Di XIE
The Korean Journal of Gastroenterology 2025;85(1):64-72
Background/Aims:
This study assessed the long-term efficacy and safety of tenofovir alafenamide (TAF) in real-world settings.
Methods:
Patients who were candidates for TAF treatment and were followed up at 12-week intervals over 192 weeks were enrolled in this study.
Results:
One hundred and forty-four patients (50 treatment-naive and 94 treatment-experienced) were included in this study. The cumulative incidence rates of cirrhosis and hepatocellular carcinoma at 192 weeks were 3.9% and 0.7%, respectively. In treatment-naive patients, the rates of a virological response, HBeAg conversion, and HBsAg loss at 192 weeks were 100%, 33.3%, and 2%, respectively. The treatment-naive patients exhibited higher baseline HBsAg levels than the treatment-experienced patients (4.31 log10IU/mL vs. 3.97 log10IU/mL). A significant decrease in the HBsAg levels from the baseline was observed at 144 and 192 weeks in the treatment-naive patients (p=0.01). The baseline body mass index (BMI) <25 kg/m2 (p=0.02) and HBsAg <3.3 log10IU/mL (p=0.04) were identified as predictive factors for a decrease in HBsAg ≥0.5 log10IU/mL at 48 weeks. The eGFR levels were consistently lower in the treatment-experienced patients throughout the study. Although the treatment-naive patients showed no abnormal increases in urinary URBP, the treatment-experienced patients showed elevated urinary β2MG and NAG levels at the baseline, which decreased over the treatment course. The total cholesterol, triglyceride, and low-density lipoprotein levels were similar in both groups.
Conclusions
Prolonging the TAF treatment duration enhances the virological response rate. The decline in HBsAg levels was more significant in the treatment-naive patients than in the treatment-experienced patients. The baseline BMI <25 kg/m2 and HBsAg <3.3 log10IU/mL were predictive factors for a significant decline in HBsAg at 48 weeks. TAF has high renal safety and no significant impact on lipid levels.

Result Analysis
Print
Save
E-mail