1.Impact of peripheral blood inflammatory markers on neovascular glaucoma secondary to diabetic retinopathy
Mingfang WANG ; Wenwen ZHU ; Deyu XIA ; Dengrui XU ; Yawen SHI ; Hongchen FU ; Qian ZHAO ; Xiuyun LI
International Eye Science 2025;25(6):1005-1008
AIM: To investigate the influence of relevant inflammatory markers in peripheral blood on the progression of neovascular glaucoma(NVG)secondary to diabetic retinopathy(DR)patients.METHODS: Retrospective case-control study. Patients were categorized into two groups based on the presence or absence of NVG: those with proliferative diabetic retinopathy(PDR)alone(PDR group, n=148)and those with NVG secondary to PDR(NVG secondary to PDR group, n=142). Peripheral blood inflammatory markers were evaluated, including white blood cell-related indices, neutrophil-to-lymphocyte ratio(NLR), platelet-to-lymphocyte ratio(PLR), monocyte-to-lymphocyte ratio(MLR), and systemic immune-inflammation index(SII). The distinctions in peripheral blood inflammatory markers between the two groups of patients and their relationships with NVG secondary to PDR were analyzed.RESULTS:No statistically significant differences were observed in basic characteristics between the two groups, confirming their comparability. However, significant differences were found in eosinophil percentage and MLR between the PDR group and the NVG secondary to PDR group(all P<0.05), with both values being significantly higher in the NVG secondary to PDR group. Multivariate Logistic regression analysis revealed that the eosinophil percentage and the MLR were factors influencing the development of patients with NVG secondary to PDR.CONCLUSION: Eosinophil percentage and MLR may be associated with the progression of PDR to NVG, and could serve as potential predictive markers for NVG development in PDR patients.
2.Design and application of a ventilator circuit interface protective device for weaning.
Chen SHEN ; Lu MA ; Ping XU ; Xinyu XIA ; Guanjie CHEN ; Deyu GU ; Xiaoqing LI
Chinese Critical Care Medicine 2025;37(4):391-393
With the continuous advancement and innovation in medical equipment technology, the transition between high-flow oxygen therapy, non-invasive ventilation, and invasive ventilation can be easily achieved by adjusting the ventilation mode of ventilators. During the weaning phase for tracheotomized patients, it is necessary to disconnect the ventilator circuit, change the ventilator mode, and gradually extend the weaning time to achieve complete ventilator liberation. During the weaning process, due to patients' excessive dependence on the ventilator, there may be situations where respiratory endpoints and Y-connectors of the ventilator are reconnected for invasive ventilation. However, during the weaning process, the Y-connector and expiratory end connectors are exposed to the air, which cannot ensure the tightness of the ventilator circuit, easily increasing the probability of ventilator circuit contamination and subsequently the risk of ventilator-associated pneumonia (VAP). To overcome these issues, the research team of department of critical care medicine of Zhongda Hospital Southeast University has designed a ventilator circuit interface protective device for weaning and has obtained a National Utility Model Patent of China (ZL 2023 2 1453385.8). The main body of the protective device is a Y-connector plug, consisting of multiple components, including a sealing piece, a protective cover, a sealing plug, an interface 1 (connects with the patient's tracheal tube), an interface 2 (connects with the respiratory branch of the ventilator), and an interface 3 (connects with the expiratory branch of the ventilator), featuring a unique design and easy operation. During the patient's weaning training process, the interface 1 and interface 2 is disconnected from the patient's tracheal tube and respiratory branch, respectively. The interface 1 is plugged with a stopper, and the interface 2 is covered with a protective cover to ensure the tightness of the expiratory branch and Y-connector of the ventilator. During the period when the patient is using the ventilator, the protective cover and plug are removed, and connecting them together ensures the tightness of the device itself, reducing the incidence of VAP caused by ventilator circuit contamination, avoiding nosocomial infections, and shortening the prolonged use of invasive ventilation, increased complication rate, extended hospital stay, and increased medical cost associated with weaning.
Humans
;
Ventilator Weaning/methods*
;
Equipment Design
;
Ventilators, Mechanical
;
Respiration, Artificial/instrumentation*
;
Pneumonia, Ventilator-Associated/prevention & control*
3.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
4.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
5.Prevalence of dentinal hypersensitivity and related factors in Chinese urban adults
Zhaoyou WANG ; Wensheng RONG ; Yisi ZHONG ; Jiangang TIAN ; Xi CHEN ; Mei ZHAO ; Lihua CUI ; Minquan DU ; Jianbo LI ; Deyu HU
Chinese Journal of Stomatology 2024;59(9):927-934
Objective:To assess the prevalence of dentinal hypersensitivity (DH) and related factors in urban adults in China.Methods:The study was designed as an observational, cross-sectional epidemiological study carried out in adults aged 18-69 years old in seven cities (Beijing, Shanghai, Wuhan, Chengdu, Xi′an, Guangzhou, and Harbin) of China. The study was conducted from March 2021 to May 2023. Patients were required to complete a questionnaire regarding the subjects′ socio-economic factors, dietary behavior, oral health behavior and personal antecedent factors. DH was clinically diagnosed by judging whether the tooth cold air stimulation provoked DH or not, and recorded by investigator pain rating Schiff score. Compare the findings of six cities (Harbin excluded) with a similar study conducted in 2008.Results:In total, 11 622 subjects from seven cities in China participated the study. Fifty two point two percent (6 072/11 622) of subjects reported DH in questionnaire, 36.7% (4 266/11 622) of subjects reported experiencing DH in response to cold air stimulation for at least one study tooth. Risk factors including age, sex, city, toothbrush method and acid reflux showed marked associations with DH ( P<0.05). The prevalence of DH of urban residents in six cities (Harbin excluded) was 33.7% (3 335/9 882), higher than that in 2008 [29.7%(2 354/7 939)]. Conclusions:Overall, DH was common among urban adults in China and the prevalence increased in recent years. Better understanding of DH and its associated factors should be considered in its prevention and management by dental professionals.
6.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
7.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
8.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
9.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
10.Single-cell RNA sequencing reveals the process of CA19-9 production and dynamics of the immune microenvironment between CA19-9 (+) and CA19-9 (-) PDAC
Deyu ZHANG ; Fang CUI ; Kailian ZHENG ; Wanshun LI ; Yue LIU ; Chang WU ; Lisi PENG ; Zhenghui YANG ; Qianqian CHEN ; Chuanchao XIA ; Shiyu LI ; Zhendong JIN ; Xiaojiang XU ; Gang JIN ; Zhaoshen LI ; Haojie HUANG
Chinese Medical Journal 2024;137(20):2415-2428
Background::Pancreatic ductal adenocarcinoma (PDAC) is one of the main types of malignant tumor of the digestive system, and patient prognosis is affected by difficulties in early diagnosis, poor treatment response, and a high postoperative recurrence rate. Carbohydrate antigen 19-9 (CA19-9) has been widely used as a biomarker for the diagnosis and postoperative follow-up of PDAC patients. Nevertheless, the production mechanism and potential role of CA19-9 in PDAC progression have not yet been elucidated.Methods::We performed single-cell RNA sequencing on six samples pathologically diagnosed as PDAC (three CA19-9-positive and three CA19-9-negative PDAC samples) and two paracarcinoma samples. We also downloaded and integrated PDAC samples (each from three CA19-9-positive and CA19-9-negative patients) from an online database. The dynamics of the proportion and potential function of each cell type were verified through immunofluorescence. Moreover, we built an in vitro coculture cellular model to confirm the potential function of CA19-9. Results::Three subtypes of cancer cells with a high ability to produce CA19-9 were identified by the markers TOP2A, AQP5, and MUC5AC. CA19-9 production bypass was discovered on antigen-presenting cancer-associated fibroblasts (apCAFs). Importantly, the proportion of immature ficolin-1 positive (FCN1+) macrophages was high in the CA19-9-negative group, and the proportion of mature M2-like macrophages was high in the CA19-9-positive group. High proportions of these two macrophage subtypes were associated with an unfavourable clinical prognosis. Further experiments indicated that CA19-9 could facilitate the transformation of M0 macrophages into M2 macrophages in the tumor microenvironment. Conclusions::Our study described CA19-9 production at single-cell resolution and the dynamics of the immune atlas in CA19-9-positive and CA19-9-negative PDAC. CA19-9 could promote M2 polarization of macrophage in the pancreatic tumor microenvironment.

Result Analysis
Print
Save
E-mail