1.Cohen syndrome in a child caused by compound heterozygous variants in VPS13B gene.
Xin MEI ; Xiao-Liang HE ; Wei-Na GAO ; Meng-Yao WANG ; Jing-Wen SHEN ; Jing WEI ; Yun XUE
Chinese Journal of Contemporary Pediatrics 2025;27(6):740-745
A 7-year-old girl was admitted to the hospital with rapidly progressive vision loss. Since 1 year of age, she had exhibited developmental delay accompanied by visual impairment and neutropenia. Combined with genetic testing and molecular pathogenicity analysis, she was diagnosed with Cohen syndrome (CS) caused by compound heterozygous variants in VPS13B (c.6940+1G>T and c.2911C>T). The c.6940+1G>T variant resulted in exon 38 skipping, leading to a frameshift and premature termination. Reverse transcription quantitative polymerase chain reaction revealed significantly reduced VPS13B gene expression (P<0.05). Bioinformatic analysis suggested that both variants likely produce truncated proteins. This case highlights that integrating clinical features with molecular pathogenicity assessment (DNA, RNA, and protein analysis) can improve early diagnostic accuracy for CS.
Humans
;
Female
;
Child
;
Vesicular Transport Proteins/genetics*
;
Developmental Disabilities/etiology*
;
Muscle Hypotonia/etiology*
;
Myopia/etiology*
;
Heterozygote
;
Intellectual Disability/etiology*
;
Microcephaly/etiology*
;
Obesity/genetics*
;
Growth Disorders/etiology*
;
Retinal Degeneration/genetics*
;
Psychomotor Disorders/genetics*
;
Fingers/abnormalities*
2.Autosomal dominant intellectual developmental disorder 60 with seizures: a case report.
Ying-Ying SUN ; Hui LIU ; Miao LIU ; Shi-Yue MEI ; Yan-Li MA
Chinese Journal of Contemporary Pediatrics 2024;26(12):1362-1366
The patient is a 10-month and 21-day-old girl who began to show developmental delays at 3 months of age, with severe language developmental disorders, stereotyped movements, and easily provoked laughter. Physical examination revealed fair skin and a flattened occiput. At 10 months of age, a video electroencephalogram suggested atypical absence seizures, with migrating slow-wave activity observed during the interictal period. Whole exome sequencing of three family members indicated a novel mutation in the AP2M1 gene, c.508C>T (p.R170W), in the patient. A total of six cases of autosomal dominant intellectual developmental disorder 60 with seizures associated with mutations in the AP2M1 gene have been reported both domestically and internationally (including this study). The main clinical features included developmental delays (6 cases), language developmental disorders (5 cases), stereotyped movements (3 cases), a tendency to smile (1 case), and atypical absence seizures (4 cases). Interictal electroencephalograms showed widespread spike waves and spike-slow wave discharges (5 cases), and migrating slow-wave activity (1 case). The c.508C>T (p.R170W) mutation may be a hotspot for mutations in the AP2M1 gene, and its clinical features are similar to those of Angelman syndrome.
Humans
;
Female
;
Seizures/genetics*
;
Infant
;
Mutation
;
Intellectual Disability/genetics*
;
Electroencephalography
;
Developmental Disabilities/genetics*
3.Genetic analysis of a child with developmental disorder and epilepsy due to a homozygous variant of PIGW gene.
Jiequn ZENG ; Yang TIAN ; Lianfeng CHEN ; Jiahao CAI ; Xiuying WANG ; Yingting LIAO ; Huiling SHEN ; Xiaojing LI
Chinese Journal of Medical Genetics 2023;40(10):1288-1291
OBJECTIVE:
To explore the genetic basis for a child featuring global developmental disorder with epilepsy.
METHODS:
A child who had presented at Guangzhou Women and Children's Medical Center in July 2022 was selected as the study subject. Clinical data was collected. Potential variant was detected by whole exome sequencing (WES). Candidate variant was validated by Sanger sequencing and bioinformatic analysis.
RESULTS:
The child, a three-year-old ethnic Zhuang Chinese girl, had presented with global developmental disorder and epilepsy, for which rehabilitation therapy was ineffective. Genetic testing revealed that she has harbored a homozygous c.821T>C (p.Leu274Pro) missense variant of the PIGW gene, for which both of her parents and sister were heterozygous carriers. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as variant of uncertain significance.
CONCLUSION
The homozygous c.821T>C (p.Leu274Pro) variant of the PIGW gene probably underlay the onset of disease in this child. Above finding has enriched the mutational spectrum of the PIGW gene.
Child, Preschool
;
Female
;
Humans
;
Computational Biology
;
Developmental Disabilities
;
Epilepsy/genetics*
;
Genetic Testing
;
Homozygote
4.Analysis of genetic variants in a child with Intellectual developmental disorder with behavioral abnormalities and craniofacial dysmorphism without seizures.
Jiao TONG ; Tao WANG ; Leilei WANG ; Dongmei YAN
Chinese Journal of Medical Genetics 2023;40(12):1546-1550
OBJECTIVE:
To explore the clinical phenotype and genetic characteristics of a child with Intellectual developmental disorder with behavioral abnormalities and craniofacial malformations without epilepsy (IDDBCS).
METHODS:
A child who had visited the Lianyungang Maternal and Child Health Care Hospital in April 2021 was selected as the study subject. Clinical data of the child were collected. Genomic DNA was extracted from peripheral blood samples of the child and his parents and subjected to whole exome sequencing (WES). Candidate variants were verified by Sanger sequencing of his family members.
RESULTS:
The child, a 3-year-and-4-month-old male, had presented with global developmental delay and cranial malformation. Genetic testing revealed that he has harbored a heterozygous c.1703delA (p.K568Sfs9) variant of the PHF21A gene, for which both of his parents were of the wild type. This low-frequency variant may alter the structure and function of the protein product. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), it was classified as a pathogenic variant (PVS1+PS2+PM2_Supporting).
CONCLUSION
The heterozygous c.1703delA (p.K568Sfs9) variant of the PHF21A gene probably underlay the IDDBCS in this patient.
Child
;
Male
;
Humans
;
Infant
;
Developmental Disabilities/genetics*
;
Craniofacial Abnormalities/genetics*
;
Seizures/genetics*
;
Intellectual Disability/genetics*
;
Problem Behavior
;
Mutation
5.Clinical and genetic analysis of two children with intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia.
Na QI ; Ke YANG ; Xingxing LEI ; Fengyang WANG ; Dong WU ; Yue GAO ; Yuwei ZHANG ; Shixiu LIAO
Chinese Journal of Medical Genetics 2023;40(4):408-412
OBJECTIVE:
To explore the clinical features and genetic etiology of two children with intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia (MICPCH).
METHODS:
Two children with MICPCH who were presented at the Henan Provincial People's Hospital between April 2019 and December 2021 were selected as the study subjects. Clinical data of the two children were collected, along with peripheral venous blood samples of them and their parents, and amniotic fluid sample of the mother of child 1. Whole exome sequencing (WES), array-comparative genomic hybridization (aCGH) and real-time quantitative PCR (qPCR) were carried out for the children, their parents and the fetus. The pathogenicity of candidate variants were evaluated.
RESULTS:
Child 1 was a 6-year-old girl featuring motor and language delay, whilst child 2 was a 4.5-year-old girl mainly featuring microcephaly and mental retardation. WES revealed that child 2 has harbored a 158.7 kb duplication in Xp11.4 (chrX: 41446160_41604854), which has encompassed exons 4~14 of the CASK gene. The same duplication was not found in either of her parents. aCGH revealed that child 1 has harbored a 29 kb deletion at Xp11.4 (chrX: 41637892_41666665), which encompassed exon 3 of the CASK gene. The same deletion was not found in either of her parents and the fetus. The above results were confirmed by qPCR assay. Above deletion and duplication were not found in the ExAC, 1000 Genomes and gnomAD databases. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were rated as likely pathogenic (PS2+PM2_Supporting).
CONCLUSION
The deletion of exon 3 and duplication of exons 4~14 of the CASK gene probably underlay the pathogenesis of MICPCH in these two children, respectively.
Humans
;
Child
;
Female
;
Child, Preschool
;
Microcephaly/genetics*
;
Developmental Disabilities/genetics*
;
Intellectual Disability/complications*
;
Comparative Genomic Hybridization
;
Mutation
6.Clinical characteristics and genetic analysis of two children with Autosomal dominant mental retardation type 21 due to variants of CTCF gene.
Yuqiang LYU ; Fengling SONG ; Kaihui ZHANG ; Min GAO ; Jian MA ; Dong WANG ; Ya WAN ; Yi LIU ; Zhongtao GAI
Chinese Journal of Medical Genetics 2023;40(5):543-546
OBJECTIVE:
To explore the clinical and genetic characteristics of two children with developmental delay.
METHODS:
Two children who had presented at the Children's Hospital Affiliated to Shandong University on August 18, 2021 were enrolled as the study subjects. Clinical and laboratory examination, chromosomal karyotyping and high-throughput sequencing were carried out for both children.
RESULTS:
Both children had a 46,XX karyotype. High-throughput sequencing showed that they have respectively carried a c.489delG (p.Q165Rfs*14) and a c.1157_1158delAT (p.Y386Cfs*22) frameshifting variant of the CTCF gene, both had a de novo origin and were unreported previously.
CONCLUSION
The CTCF gene variants probably underlay the development delay in the two children. Above discovery has enriched the mutational spectrum of the CTCF gene and has important implications for revealing the genotype-phenotype correlation for similar patients.
Child
;
Humans
;
Developmental Disabilities/genetics*
;
High-Throughput Nucleotide Sequencing
;
Intellectual Disability/genetics*
;
Karyotyping
;
Mutation
7.Identification of a NONO gene variant in a child with congenital heart disease and global developmental delay.
Yuqing LEI ; Xiaoyan PENG ; Xinrui WANG ; Hua CAO
Chinese Journal of Medical Genetics 2023;40(6):691-695
OBJECTIVE:
To explore the genetic basis for a child with congenital heart disease (CHD) and global developmental delay (GDD).
METHODS:
A child who was hospitalized at the Department of Cardiac Surgery of Fujian Children's Hospital on April 27, 2022 was selected as the study subject. Clinical data of the child was collected. Umbilical cord blood sample of the child and peripheral blood samples of his parents were collected and subjected to whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing and bioinformatic analysis.
RESULTS:
The child, a 3-year-and-3-month-old boy, had manifested cardiac abnormalities and developmental delay. WES revealed that he had harbored a nonsense variant of c.457C>T (p.Arg153*) in the NONO gene. Sanger sequencing showed that neither of his parents has carried the same variant. The variant has been recorded by the OMIM, ClinVar and HGMD databases, but not in the normal population databases of 1000 Genomes, dbSNP and gnomAD. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), it was rated as a pathogenic variant.
CONCLUSION
The c.457C>T (p.Arg153*) variant of the NONO gene probably underlay the CHD and GDD in this child. Above finding has expanded the phenotypic spectrum of the NONO gene and provided a reference for the clinical diagnosis and genetic counseling for this family.
Humans
;
Male
;
Computational Biology
;
DNA-Binding Proteins
;
Genetic Counseling
;
Genomics
;
Heart Defects, Congenital/genetics*
;
Mutation
;
Parents
;
RNA-Binding Proteins
;
Child, Preschool
;
Developmental Disabilities/genetics*
8.Genetic analysis of two children with developmental delay and intellectual disability.
Fengyang WANG ; Na QI ; Yue GAO ; Dong WU ; Mengting ZHANG ; Qian ZHANG ; Ke YANG ; Huijuan PENG ; Xingxing LEI ; Shixiu LIAO
Chinese Journal of Medical Genetics 2023;40(7):876-880
OBJECTIVE:
To explore the genetic etiology of two patients with developmental delay and intellectual disability.
METHODS:
Two children who were respectively admitted to Henan Provincial People's Hospital on August 29, 2021 and August 5, 2019 were selected as the study subjects. Clinical data were collected, and array comparative genomic hybridization (aCGH) was carried out on the children and their parents for the detection of chromosomal microduplication/microdeletions.
RESULTS:
Patient 1 was a 2-year-and-10-month female and patient 2 was a 3-year-old female. Both children had featured developmental delay, intellectual disability, and abnormal findings on cranial MRI. aCGH revealed that patient 1 has harbored arr[hg19] 6q14.2q15(84621837_90815662)×1, a 6.19 Mb deletion at 6q14.2q15, which encompassed ZNF292, the pathogenic gene for Autosomal dominant intellectual developmental disorder 64. Patient 2 has harbored arr[hg19] 22q13.31q13.33(46294326_51178264)×1, a 4.88 Mb deletion at 22q13.31q13.33 encompassing the SHANK3 gene, haploinsufficiency of which can lead to Phelan-McDermid syndrome. Both deletions were classified as pathogenic CNVs based on the guidelines of American College of Medical Genetics and Genomics (ACMG) and were not found in their parents.
CONCLUSION
The 6q14.2q15 deletion and 22q13-31q13.33 deletion probably underlay the developmental delay and intellectual disability in the two children, respectively. Haploinsufficiency of the ZNF292 gene may account for the key clinical features of the 6q14.2q15 deletion.
Humans
;
Child
;
Female
;
Child, Preschool
;
Intellectual Disability/genetics*
;
Comparative Genomic Hybridization
;
Chromosome Disorders/genetics*
;
Chromosome Deletion
;
Magnetic Resonance Imaging
;
Chromosomes, Human, Pair 22
;
Developmental Disabilities/genetics*
;
Carrier Proteins/genetics*
;
Nerve Tissue Proteins/genetics*
9.Clinical and genetic analysis of a child with Schaaf-Yang syndrome.
Juan LUO ; Xiaohong CHEN ; Hui YAO ; Luhong YANG ; Tingting DU ; Yakun LI
Chinese Journal of Medical Genetics 2023;40(1):53-56
OBJECTIVE:
To explore the clinical characteristics and genetic etiology of a child with Schaaf-Yang syndrome (SYS).
METHODS:
Peripheral blood samples of the child and his parents were collected and subjected to whole exome sequencing. Sanger sequencing was used for family constellation verification, and bioinformatic analysis was performed for the candidate variant.
RESULTS:
The child, a 1-year-and-9-month-old boy, had clinical manifestations of retarded growth, small penis, and unusual facies. Genetic testing revealed that the child has harbored a novel heterozygous variant of c.3078dupG (p.Leu1027Valfs*28) of the MAGEL2 gene. Sanger sequencing showed that neither parent of the child carried the same variant. The c.3078dupG(p.Leu1027Valfs*28) variant of the MAGEL2 gene has not been included in the databases of ESP, 1000 Genomes and ExAC. According to the Standards and Guidelines for the Interpretation of Sequence Variants of the American College of Medical Genetics and Genomics (ACMG), the variant was judged to be pathogenic.
CONCLUSION
The c.3078dupG (p.Leu1027Valfs*28) variant of the MAGEL2 gene probably underlay the SYS in this child, which has further expanded the spectrum of the MAGEL2 gene variants.
Child
;
Humans
;
Infant
;
Male
;
Exome Sequencing
;
Genetic Testing
;
Heterozygote
;
Mutation
;
Proteins/genetics*
;
Developmental Disabilities/genetics*
10.Application of copy number variation sequencing in patients with intellectual disability/developmental delay and autistic spectrum disorder.
Jie LEI ; Gang ZHAO ; Yanke HUANG ; Min LONG ; Wei LI ; Xi DENG ; Zihan XIU ; Yanwei XIAO ; Sifan ZENG ; Jing ZHANG
Chinese Journal of Medical Genetics 2023;40(3):308-316
OBJECTIVE:
To assess the value of copy number variation sequencing (CNV-seq) for the diagnosis of children with intellectual disability (ID), developmental delay (DD), and autistic spectrum disorder (ASD).
METHODS:
Forty patients with ID/DD/ASD referred to Nanshan Maternity and Child Health Care Hospital from September 2018 to January 2022 were enrolled. G-banded karyotyping analysis was carried out for the patients. Genomic DNA was extracted from peripheral blood samples and subjected to CNV-Seq analysis to detect chromosome copy number variations (CNVs) in such patients. ClinVar, DECIPHER, OMIM and other database were searched for data annotation.
RESULTS:
Among the 40 patients (including 30 males and 10 females), 16, 15 and 6 were diagnosed with ID, DD and ASD, respectively. One patient had combined symptoms of ID and DD, whilst the remaining two had combined ID and ASD. Four patients were found with abnormal karyotypes, including 47,XY,+mar, 46,XY,inv(8)(p11.2q21.2), 46,XX,del(5)(p14) and 46,XX[76]/46,X,dup(X)(p21.1q12). Chromosome polymorphism was also found in two other patients. CNV-seq analysis has detected 32 CNVs in 20 patients (50.0%, 20/40). Pathogenic CNVs were found in 10 patients (25.0%), 15 CNVs of uncertain clinical significance were found in 12 patients (30.0%), and 7 likely benign CNVs were found in 4 patients (10.0%).
CONCLUSION
Chromosome CNVs play an important role in the pathogenesis of ID/DD/ASD. CNV-seq can detect chromosomal abnormalities including microdeletions and microduplications, which could provide a powerful tool for revealing the genetic etiology of ID/DD/ASD patients.
Pregnancy
;
Child
;
Male
;
Humans
;
Female
;
DNA Copy Number Variations
;
Intellectual Disability/genetics*
;
Autism Spectrum Disorder/genetics*
;
Developmental Disabilities/genetics*
;
Abnormal Karyotype

Result Analysis
Print
Save
E-mail