1.The role of complement C5a receptor in DPSC odontoblastic differentiation and in vivo reparative dentin formation.
Muhammad IRFAN ; Ji-Hyun KIM ; Hassan MARZBAN ; David A REED ; Anne GEORGE ; Lyndon F COOPER ; Seung CHUNG
International Journal of Oral Science 2022;14(1):7-7
Therapeutic dentin regeneration remains difficult to achieve, and a majority of the attention has been given to anabolic strategies to promote dentinogenesis directly, whereas, the available literature is insufficient to understand the role of inflammation and inflammatory complement system on dentinogenesis. The aim of this study is to determine the role of complement C5a receptor (C5aR) in regulating dental pulp stem cells (DPSCs) differentiation and in vivo dentin regeneration. Human DPSCs were subjected to odontogenic differentiation in osteogenic media treated with the C5aR agonist and C5aR antagonist. In vivo dentin formation was evaluated using the dentin injury/pulp-capping model of the C5a-deficient and wild-type mice. In vitro results demonstrate that C5aR inhibition caused a substantial reduction in odontogenic DPSCs differentiation markers such as DMP-1 and DSPP, while the C5aR activation increased these key odontogenic genes compared to control. A reparative dentin formation using the C5a-deficient mice shows that dentin regeneration is significantly reduced in the C5a-deficient mice. These data suggest a positive role of C5aR in the odontogenic DPSCs differentiation and tertiary/reparative dentin formation. This study addresses a novel regulatory pathway and a therapeutic approach for improving the efficiency of dentin regeneration in affected teeth.
Animals
;
Cell Differentiation/physiology*
;
Cells, Cultured
;
Complement C5a/metabolism*
;
Dental Pulp/physiology*
;
Dentin
;
Mice
;
Receptor, Anaphylatoxin C5a
;
Stem Cells
2.Blockade of PD-L1/PD-1 signaling promotes osteo-/odontogenic differentiation through Ras activation.
So Mi JEON ; Je Sun LIM ; Su Hwan PARK ; Hyung Joon KIM ; Hyung-Ryong KIM ; Jong-Ho LEE
International Journal of Oral Science 2022;14(1):18-18
The programmed cell death ligand 1 (PD-L1) and its receptor programmed cell death 1 (PD-1) deliver inhibitory signals to regulate immunological tolerance during immune-mediated diseases. However, the role of PD-1 signaling and its blockade effect on human dental pulp stem cells (hDPSCs) differentiation into the osteo-/odontogenic lineage remain unknown. We show here that PD-L1 expression, but not PD-1, is downregulated during osteo-/odontogenic differentiation of hDPSCs. Importantly, PD-L1/PD-1 signaling has been shown to negatively regulate the osteo-/odontogenic differentiation of hDPSCs. Mechanistically, depletion of either PD-L1 or PD-1 expression increased ERK and AKT phosphorylation levels through the upregulation of Ras enzyme activity, which plays a pivotal role during hDPSCs osteo-/odontogenic differentiation. Treatment with nivolumab (a human anti-PD-1 monoclonal antibody), which targets PD-1 to prevent PD-L1 binding, successfully enhanced osteo-/odontogenic differentiation of hDPSCs through enhanced Ras activity-mediated phosphorylation of ERK and AKT. Our findings underscore that downregulation of PD-L1 expression accompanies during osteo-/odontogenic differentiation, and hDPSCs-intrinsic PD-1 signaling inhibits osteo-/odontogenic differentiation. These findings provide a significant basis that PD-1 blockade could be effective immunotherapeutic strategies in hDPSCs-mediated dental pulp regeneration.
B7-H1 Antigen/metabolism*
;
Dental Pulp/metabolism*
;
Humans
;
Programmed Cell Death 1 Receptor/metabolism*
;
Regeneration
;
Stem Cells
3.Sphingosine-1-phosphate hinders the osteogenic differentiation of dental pulp stem cells in association with AKT signaling pathways.
Bongkun CHOI ; Ji-Eun KIM ; Si-On PARK ; Eun-Young KIM ; Soyoon OH ; Hyuksu CHOI ; Dohee YOON ; Hyo-Jin MIN ; Hyung-Ryong KIM ; Eun-Ju CHANG
International Journal of Oral Science 2022;14(1):21-21
Sphingosine-1-phosphate (S1P) is an important lipid mediator that regulates a diverse range of intracellular cell signaling pathways that are relevant to tissue engineering and regenerative medicine. However, the precise function of S1P in dental pulp stem cells (DPSCs) and its osteogenic differentiation remains unclear. We here investigated the function of S1P/S1P receptor (S1PR)-mediated cellular signaling in the osteogenic differentiation of DPSCs and clarified the fundamental signaling pathway. Our results showed that S1P-treated DPSCs exhibited a low rate of differentiation toward the osteogenic phenotype in association with a marked reduction in osteogenesis-related gene expression and AKT activation. Of note, both S1PR1/S1PR3 and S1PR2 agonists significantly downregulated the expression of osteogenic genes and suppressed AKT activation, resulting in an attenuated osteogenic capacity of DPSCs. Most importantly, an AKT activator completely abrogated the S1P-mediated downregulation of osteoblastic markers and partially prevented S1P-mediated attenuation effects during osteogenesis. Intriguingly, the pro-inflammatory TNF-α cytokine promoted the infiltration of macrophages toward DPSCs and induced S1P production in both DPSCs and macrophages. Our findings indicate that the elevation of S1P under inflammatory conditions suppresses the osteogenic capacity of the DPSCs responsible for regenerative endodontics.
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
;
Dental Pulp/metabolism*
;
Lysophospholipids
;
Osteogenesis
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction
;
Sphingosine/analogs & derivatives*
;
Stem Cells
4.Experimental study on the in vitro osteogenic differentiation of dental pulp stem cells encapsulated in Pluronic F-127 hydrogel.
Abudureheman PAERHATI ; Huojia MUHETAER ; Wufuer DUOLIKUN ; Halike MAIMAITIYIMING ; X W LIU
Chinese Journal of Stomatology 2016;51(7):420-425
OBJECTIVETo evaluate the biocompatibility and viability of nonionic triblock copolymer Pluronic F-127 as a cell scaffold for osteogenic differentiation of dental pulp stem cells(DPSC).
METHODSDPSC were obtained via enzymatic digestion method and purified bylimited dilution method. The freeze dried hydrogel of 20% Pluronic F-127 was prepared and itsstructurewas observed usingscanning electron microscopy(SEM). After the encapsulation of cells of passage 3 in Pluronic F-127, the effects of hydrogel on the proliferations of DPSC were assessed with methyl thiazolyl terazolium(MTT) after one day and 3, 5, 7 days of incubations, respectively. On day 14, osteogenic abilities of DPSC encapsulated in the hydrogel were estimated by means of alizarin red S, immunocytochemical staining and real-time quantitative PCR(RT-qPCR).
RESULTSDPSC were isolated and cultured successfully in the present study. SEM observations showed that porous structures which might be suitable for cell culture. A570 values of MTT were then normalized. A570 values of the cells in 2D cultures were 0.30±0.06, 0.30±0.17, 0.35±0.04 and 0.25±0.06 and A570 values of DPSC in 3D cultures were 0.36±0.06, 0.54±0.18, 0.70±0.10 and 0.32±0.10 on day 1, 3, 5 and 7, respectively. A570 value peaks were found on day 5 in both groups. The proliferation of 3D cultured DPSC was higher than that of 2D cultured cells(P<0.05). After 14 days of osteogenic induction, there were no calcium nodules observed in the control group and the numbers of calcium nodulesin the 2D and 3D groups had no significant difference(P>0.05). Inmmunocytochemical staining demonstrated strong expression of osteoblast marker Runt-related transcription factor 2(RUNX2), type Ⅰ collagen(Col-Ⅰ) and relatively low expression of osteocalcin(OCN). Moreover, RT-qPCR showed no differences between the relative expression of ALP, RUNX-2, OCN in the 2D and 3D groups (P>0.05), but a higher relative expression of Col-Ⅰ was observed in the 3D group(P=0.023).
CONCLUSIONSPluronic F-127 is a promising cell scaffold or cell carrier for the osteobalst differentiation of dental pulp stem cells.
Cell Culture Techniques ; Cell Differentiation ; Cells, Cultured ; Collagen Type I ; metabolism ; Core Binding Factor Alpha 1 Subunit ; metabolism ; Dental Pulp ; cytology ; Humans ; Hydrogel, Polyethylene Glycol Dimethacrylate ; Osteoblasts ; metabolism ; Osteocalcin ; metabolism ; Osteogenesis ; Poloxamer ; Stem Cells ; cytology ; Tissue Scaffolds
5.Difference of in vitro osteogenic differentiation and osteoclast capacity between stem cells from human exfoliated deciduous teeth and dental pulp stem cells.
Bo-Wen LU ; Na LIU ; Lu-Lu XU ; Hai-Gang SHI ; Yang ZHANG ; Wei ZHANG
Journal of Southern Medical University 2016;36(2):180-185
OBJECTIVETo compare the osteogenic differentiation potential and osteoclast capacity between stem cells from human exfoliated deciduous teeth (SHED) in the physiological root resorption period and dental pulp stem cells (DPSCs).
METHODSSHED and DPSCs were isolated, purified and cultured in vitro. The two stem cells were examined with ALP staining at 14 days and with alizarin red staining at 21 days of osteogenic induction, and the expressions of the genes associated with osteogenesis and osteoclastogenesis were detected using real-time PCR.
RESULTSThe isolated SHED and DPSCs both showed an elongate spindle-shaped morphology. After osteogenic induction of the cells, Alizarin red staining visualized a greater number of mineralized nodules in SHED than in DPSCs (P<0.05), and SHED also exhibited a stronger ALP activity than DPSCs (P<0.05). RT-PCR test results showed that the two stem cells expressed RANKL,OCN, ALP, OPG and Runx2 mRNA after osteogenic induction, but the expression levels of Runx2, OCN and ALP were lower in DPSCs than in SHED (P<0.05), and the ratio of RANKL/OPG was significantly higher in SHED (P<0.05).
CONCLUSIONSCompared with DPSCs, SHED has not only the ability of osteogenic differentiation but also an osteoclast capacity, which sheds light on the regulatory role of SHED in physiological root resorption bone remodeling.
Alkaline Phosphatase ; metabolism ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Core Binding Factor Alpha 1 Subunit ; metabolism ; Dental Pulp ; cytology ; Humans ; Osteoclasts ; cytology ; Osteogenesis ; Osteopontin ; metabolism ; RANK Ligand ; metabolism ; Real-Time Polymerase Chain Reaction ; Stem Cells ; cytology ; Tooth, Deciduous ; cytology
6.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
7.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
8.Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway.
Jing YANG ; Ling YE ; Tian-Qian HUI ; Dong-Mei YANG ; Ding-Ming HUANG ; Xue-Dong ZHOU ; Jeremy J MAO ; Cheng-Lin WANG
International Journal of Oral Science 2015;7(2):95-102
Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/β-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/β-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/β-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of β-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced β-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of β-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.
Bone Morphogenetic Protein 2
;
physiology
;
Cell Differentiation
;
physiology
;
Dental Pulp
;
cytology
;
Humans
;
MAP Kinase Signaling System
;
Wnt Proteins
;
metabolism
;
beta Catenin
;
metabolism
9.Expression of helicase DDX41 in human dental pulp tissues and cells.
Xiao-Jun YANG ; Jin HOU ; Xin-Zhu LI ; Jiao HU
Journal of Southern Medical University 2015;35(4):587-590
OBJECTIVETo detect the expression of D-E-A-D-box polypeptide 41 (DDX41) in human dental pulp tissues and cells.
METHODSThe mRNA and protein expressions of DDX41 in human dental pulp cells were detected by RT-PCR and immunocytochemistry, and the expression of DDX41 in human dental pulp tissues was investigated by immunohistochemistry.
RESULTSStrong expressions of DDX41 mRNA and protein were detected in dental pulp cells. In dental pulp tissues, DDX41 was expressed in the cytoplasm and nucleus of odontoblasts.
CONCLUSIONDDX41/STING-dependent TBK1-IRF3-IFN-β signaling pathway may play a role in innate immune responses of the dental pulp to caries and pulpitis.
Cell Nucleus ; metabolism ; Cells, Cultured ; Cytoplasm ; metabolism ; DEAD-box RNA Helicases ; metabolism ; Dental Pulp ; metabolism ; Humans ; Immunohistochemistry ; Odontoblasts ; metabolism ; RNA, Messenger ; Signal Transduction
10.Expression profiles and bioinformatic analysis of miRNA in human dental pulp cells during endothelial differentiation.
Qimei GONG ; Hongwei JIANG ; Jinming WANG ; Junqi LING
Chinese Journal of Stomatology 2014;49(5):284-289
OBJECTIVETo investigate the differential expression profile and bioinformatic analysis of microRNA (miRNA) in human dental pulp cells (DPC) during endothelial differentiation.
METHODSDPC were cultured in endothelial induction medium (50 µg/L vascular endothelial growth factor, 10 µg/L basic fibroblast growth factor and 2% fetal calf serum) for 7 days. Meanwhile non-induced DPC were used as control.Quantitative real-time PCR (qRT-PCR) was applied to detect vascular endothelial marker genes [CD31, von Willebrand factor (vWF) and vascular endothelial-cadherin (VE-cadherin)] and in vitro tube formation on matrigel was used to analyze the angiogenic ability of differentiated cells. And then miRNA expression profiles of DPC were examined using miRNA microarray and then the differentially expressed miRNA were validated by qRT-PCR. Furthermore, bioinformatic analysis was employed to predict the target genes of miRNA and to analyze the possible biological functions and signaling pathways that were involved in DPC after induction.
RESULTSThe relative mRNA level of CD31, vWF and VE-cadherin in the control group were (3.48 ± 0.22) ×10(-4), (3.13 ± 0.31) ×10(-4) and (39.60 ± 2.36) ×10(-4), and (19.57 ± 2.20) ×10(-4), (48.13 ± 0.54) ×10(-4) and (228.00 ± 8.89) ×10(-4) in the induced group. The expressions of CD31, vWF and VE-cadherin were increased significantly in endothelial induced DPC compared to the control group (P < 0.05). For in vitro tube formation assay, tubular structures were formed on the matrigel by differentiated DPC. A total of 47 miRNA were differentially expressed, in which 15 miRNA were up-regulated and 32 miRNAs down-regulated in differentiated DPC compared with the control. Of these, 4 miRNA were confirmed by qRT-PCR. The target genes of differential miRNA were predicted to associate with several biological functions, such as the regulation of transcription, cell motion, blood vessel morphogenesis, angiogenesis and cytoskeletal protein, and signaling pathways including the mitogen-activated protein kinase (MAPK) and the Wnt signaling pathway.
CONCLUSIONSThe differential miRNA expression identified in this study may be involved in governing DPC endothelial differentiation, thus contributing to the future research on regulatory mechanisms in dental pulp angiogenesis.
Antigens, CD ; Cadherins ; Cell Differentiation ; Collagen ; Computational Biology ; Dental Pulp ; metabolism ; Drug Combinations ; Fibroblast Growth Factor 2 ; Humans ; Laminin ; MicroRNAs ; Platelet Endothelial Cell Adhesion Molecule-1 ; biosynthesis ; Proteoglycans ; RNA, Messenger ; Real-Time Polymerase Chain Reaction ; Signal Transduction ; Vascular Endothelial Growth Factor A ; Wnt Signaling Pathway ; von Willebrand Factor

Result Analysis
Print
Save
E-mail