1.Cardiomyocyte pyroptosis inhibited by dental pulp-derived mesenchymal stem cells via the miR-19a-3p/IRF-8/MAPK pathway in ischemia-reperfusion.
Yi LI ; Xiang WANG ; Sixian WENG ; Chenxi XIA ; Xuyang MENG ; Chenguang YANG ; Ying GUO ; Zuowei PEI ; Haiyang GAO ; Fang WANG
Chinese Medical Journal 2025;138(18):2336-2346
BACKGROUND:
The protective effect of mesenchymal stem cells (MSCs) on cardiac ischemia-reperfusion (I/R) injury has been widely reported. Dental pulp-derived mesenchymal stem cells (DP-MSCs) have therapeutic effects on various diseases, including diabetes and cirrhosis. This study aimed to determine the therapeutic effects of DP-MSCs on I/R injury and elucidate the underlying mechanism.
METHODS:
Myocardial I/R injury model mice were treated with DP-MSCs or a miR-19a-3p mimic. The infarct volume, fibrotic area, pyroptosis, inflammation level, and cardiac function were measured. Cardiomyocytes exposed to hypoxia-reoxygenation were transfected with the miR-19a-3p mimic, miR-19a-3p inhibitor, or negative control. Pyroptosis and protein expression in the interferon regulatory factor 8/mitogen-activated protein kinase (IRF-8/MAPK) pathway were measured.
RESULTS:
DP-MSCs protected cardiac function in cardiac I/R-injured mice and inhibited cardiomyocyte pyroptosis. The upregulation of miR-19a-3p protected cardiac function, inhibited cardiomyocyte pyroptosis, and inhibited IRF-8/MAPK signaling in cardiac I/R-injured mice. DP-MSCs inhibited cardiomyocyte pyroptosis and the IRF-8/MAPK signaling by upregulating the miR-19a-3p levels in cardiomyocytes injured by I/R.
CONCLUSION
DP-MSCs protected cardiac function by inhibiting cardiomyocyte pyroptosis through miR-19a-3p under I/R conditions.
Animals
;
MicroRNAs/metabolism*
;
Pyroptosis/genetics*
;
Mesenchymal Stem Cells/metabolism*
;
Myocytes, Cardiac/cytology*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Dental Pulp/cytology*
;
Myocardial Reperfusion Injury/therapy*
;
MAP Kinase Signaling System/physiology*
2.NUP62 alleviates senescence and promotes the stemness of human dental pulp stem cells via NSD2-dependent epigenetic reprogramming.
Xiping WANG ; Li WANG ; Linxi ZHOU ; Lu CHEN ; Jiayi SHI ; Jing GE ; Sha TIAN ; Zihan YANG ; Yuqiong ZHOU ; Qihao YU ; Jiacheng JIN ; Chen DING ; Yihuai PAN ; Duohong ZOU
International Journal of Oral Science 2025;17(1):34-34
Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis. However, mechanisms associated with stem cell senescence require further investigation. In this study, we conducted a proteomic analysis of human dental pulp stem cells (HDPSCs) obtained from individuals of various ages. Our findings showed that the expression of NUP62 was decreased in aged HDPSCs. We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo. Conversely, the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs. Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression, we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1. This, in turn, stimulates the transcription of the epigenetic enzyme NSD2. Finally, the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes (HMGA1, HMGA2, and SIRT6). Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.
Humans
;
Dental Pulp/cytology*
;
Nuclear Pore Complex Proteins/genetics*
;
Cellular Senescence/genetics*
;
Stem Cells/metabolism*
;
Epigenesis, Genetic
;
Cell Proliferation
;
Cell Differentiation
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Cells, Cultured
;
Cellular Reprogramming
;
Cell Movement
;
Proteomics
3.Profiling and functional characterization of long noncoding RNAs during human tooth development.
Xiuge GU ; Wei WEI ; Chuan WU ; Jing SUN ; Xiaoshan WU ; Zongshan SHEN ; Hanzhang ZHOU ; Chunmei ZHANG ; Jinsong WANG ; Lei HU ; Suwen CHEN ; Yuanyuan ZHANG ; Songlin WANG ; Ran ZHANG
International Journal of Oral Science 2025;17(1):38-38
The regulatory processes in developmental biology research are significantly influenced by long non-coding RNAs (lncRNAs). However, the dynamics of lncRNA expression during human tooth development remain poorly understood. In this research, we examined the lncRNAs present in the dental epithelium (DE) and dental mesenchyme (DM) at the late bud, cap, and early bell stages of human fetal tooth development through bulk RNA sequencing. Developmental regulators co-expressed with neighboring lncRNAs were significantly enriched in odontogenesis. Specific lncRNAs expressed in the DE and DM, such as PANCR, MIR205HG, DLX6-AS1, and DNM3OS, were identified through a combination of bulk RNA sequencing and single-cell analysis. Further subcluster analysis revealed lncRNAs specifically expressed in important regions of the tooth germ, such as the inner enamel epithelium and coronal dental papilla (CDP). Functionally, we demonstrated that CDP-specific DLX6-AS1 enhanced odontoblastic differentiation in human tooth germ mesenchymal cells and dental pulp stem cells. These findings suggest that lncRNAs could serve as valuable cell markers for tooth development and potential therapeutic targets for tooth regeneration.
Humans
;
RNA, Long Noncoding/metabolism*
;
Odontogenesis/genetics*
;
Tooth Germ/embryology*
;
Cell Differentiation
;
Gene Expression Regulation, Developmental
;
Mesoderm/metabolism*
;
Tooth/embryology*
;
Gene Expression Profiling
;
Sequence Analysis, RNA
;
Dental Pulp/cytology*
4.Osteomodulin modulates the inflammatory responses via the interleukin-1 receptor 1/nuclear factor-κB signaling pathway in dental pulpitis.
Yueyi YANG ; Xuchen HU ; Meiling JING ; Xiaohan ZHU ; Xiaoyu LIU ; Wenduo TAN ; Zhanyi CHEN ; Chenguang NIU ; Zhengwei HUANG
International Journal of Oral Science 2025;17(1):41-41
Pulpitis is a common infective oral disease in clinical situations. The regulatory mechanisms of immune defense in pulpitis are still being investigated. Osteomodulin (OMD) is a small leucine-rich proteoglycan family member distributed in bones and teeth. It is a bioactive protein that promotes osteogenesis and suppresses the apoptosis of human dental pulp stem cells (hDPSCs). In this study, the role of OMD in pulpitis and the OMD-induced regulatory mechanism were investigated. The OMD expression in normal and inflamed human pulp tissues was detected via immunofluorescence staining. Intriguingly, the OMD expression decreased in the inflammatory infiltration area of pulpitis specimens. The cellular experiments demonstrated that recombined human OMD could resist the detrimental effects of lipopolysaccharide (LPS)-induced inflammation. A conditional Omd knockout mouse model with pulpal inflammation was established. LPS-induced inflammatory impairment significantly increased in conditional Omd knockout mice, whereas OMD administration exhibited a protective effect against pulpitis. Mechanistically, the transcriptome alterations of OMD overexpression showed significant enrichment in the nuclear factor-κB (NF-κB) signaling pathway. Interleukin-1 receptor 1 (IL1R1), a vital membrane receptor activating the NF-κB pathway, was significantly downregulated in OMD-overexpressing hDPSCs. Additionally, the interaction between OMD and IL1R1 was verified using co-immunoprecipitation and molecular docking. In vivo, excessive pulpal inflammation in Omd-deficient mice was rescued using an IL1R antagonist. Overall, OMD played a protective role in the inflammatory response via the IL1R1/NF-κB signaling pathway. OMD may optimize the immunomodulatory functions of hDPSCs and can be used for regenerative endodontics.
Pulpitis/metabolism*
;
NF-kappa B/metabolism*
;
Animals
;
Signal Transduction
;
Humans
;
Mice
;
Mice, Knockout
;
Dental Pulp/metabolism*
;
Disease Models, Animal
;
Lipopolysaccharides
5.The role of complement C5a receptor in DPSC odontoblastic differentiation and in vivo reparative dentin formation.
Muhammad IRFAN ; Ji-Hyun KIM ; Hassan MARZBAN ; David A REED ; Anne GEORGE ; Lyndon F COOPER ; Seung CHUNG
International Journal of Oral Science 2022;14(1):7-7
Therapeutic dentin regeneration remains difficult to achieve, and a majority of the attention has been given to anabolic strategies to promote dentinogenesis directly, whereas, the available literature is insufficient to understand the role of inflammation and inflammatory complement system on dentinogenesis. The aim of this study is to determine the role of complement C5a receptor (C5aR) in regulating dental pulp stem cells (DPSCs) differentiation and in vivo dentin regeneration. Human DPSCs were subjected to odontogenic differentiation in osteogenic media treated with the C5aR agonist and C5aR antagonist. In vivo dentin formation was evaluated using the dentin injury/pulp-capping model of the C5a-deficient and wild-type mice. In vitro results demonstrate that C5aR inhibition caused a substantial reduction in odontogenic DPSCs differentiation markers such as DMP-1 and DSPP, while the C5aR activation increased these key odontogenic genes compared to control. A reparative dentin formation using the C5a-deficient mice shows that dentin regeneration is significantly reduced in the C5a-deficient mice. These data suggest a positive role of C5aR in the odontogenic DPSCs differentiation and tertiary/reparative dentin formation. This study addresses a novel regulatory pathway and a therapeutic approach for improving the efficiency of dentin regeneration in affected teeth.
Animals
;
Cell Differentiation/physiology*
;
Cells, Cultured
;
Complement C5a/metabolism*
;
Dental Pulp/physiology*
;
Dentin
;
Mice
;
Receptor, Anaphylatoxin C5a
;
Stem Cells
6.Blockade of PD-L1/PD-1 signaling promotes osteo-/odontogenic differentiation through Ras activation.
So Mi JEON ; Je Sun LIM ; Su Hwan PARK ; Hyung Joon KIM ; Hyung-Ryong KIM ; Jong-Ho LEE
International Journal of Oral Science 2022;14(1):18-18
The programmed cell death ligand 1 (PD-L1) and its receptor programmed cell death 1 (PD-1) deliver inhibitory signals to regulate immunological tolerance during immune-mediated diseases. However, the role of PD-1 signaling and its blockade effect on human dental pulp stem cells (hDPSCs) differentiation into the osteo-/odontogenic lineage remain unknown. We show here that PD-L1 expression, but not PD-1, is downregulated during osteo-/odontogenic differentiation of hDPSCs. Importantly, PD-L1/PD-1 signaling has been shown to negatively regulate the osteo-/odontogenic differentiation of hDPSCs. Mechanistically, depletion of either PD-L1 or PD-1 expression increased ERK and AKT phosphorylation levels through the upregulation of Ras enzyme activity, which plays a pivotal role during hDPSCs osteo-/odontogenic differentiation. Treatment with nivolumab (a human anti-PD-1 monoclonal antibody), which targets PD-1 to prevent PD-L1 binding, successfully enhanced osteo-/odontogenic differentiation of hDPSCs through enhanced Ras activity-mediated phosphorylation of ERK and AKT. Our findings underscore that downregulation of PD-L1 expression accompanies during osteo-/odontogenic differentiation, and hDPSCs-intrinsic PD-1 signaling inhibits osteo-/odontogenic differentiation. These findings provide a significant basis that PD-1 blockade could be effective immunotherapeutic strategies in hDPSCs-mediated dental pulp regeneration.
B7-H1 Antigen/metabolism*
;
Dental Pulp/metabolism*
;
Humans
;
Programmed Cell Death 1 Receptor/metabolism*
;
Regeneration
;
Stem Cells
7.Sphingosine-1-phosphate hinders the osteogenic differentiation of dental pulp stem cells in association with AKT signaling pathways.
Bongkun CHOI ; Ji-Eun KIM ; Si-On PARK ; Eun-Young KIM ; Soyoon OH ; Hyuksu CHOI ; Dohee YOON ; Hyo-Jin MIN ; Hyung-Ryong KIM ; Eun-Ju CHANG
International Journal of Oral Science 2022;14(1):21-21
Sphingosine-1-phosphate (S1P) is an important lipid mediator that regulates a diverse range of intracellular cell signaling pathways that are relevant to tissue engineering and regenerative medicine. However, the precise function of S1P in dental pulp stem cells (DPSCs) and its osteogenic differentiation remains unclear. We here investigated the function of S1P/S1P receptor (S1PR)-mediated cellular signaling in the osteogenic differentiation of DPSCs and clarified the fundamental signaling pathway. Our results showed that S1P-treated DPSCs exhibited a low rate of differentiation toward the osteogenic phenotype in association with a marked reduction in osteogenesis-related gene expression and AKT activation. Of note, both S1PR1/S1PR3 and S1PR2 agonists significantly downregulated the expression of osteogenic genes and suppressed AKT activation, resulting in an attenuated osteogenic capacity of DPSCs. Most importantly, an AKT activator completely abrogated the S1P-mediated downregulation of osteoblastic markers and partially prevented S1P-mediated attenuation effects during osteogenesis. Intriguingly, the pro-inflammatory TNF-α cytokine promoted the infiltration of macrophages toward DPSCs and induced S1P production in both DPSCs and macrophages. Our findings indicate that the elevation of S1P under inflammatory conditions suppresses the osteogenic capacity of the DPSCs responsible for regenerative endodontics.
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
;
Dental Pulp/metabolism*
;
Lysophospholipids
;
Osteogenesis
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction
;
Sphingosine/analogs & derivatives*
;
Stem Cells
8.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
9.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
10.Difference of in vitro osteogenic differentiation and osteoclast capacity between stem cells from human exfoliated deciduous teeth and dental pulp stem cells.
Bo-Wen LU ; Na LIU ; Lu-Lu XU ; Hai-Gang SHI ; Yang ZHANG ; Wei ZHANG
Journal of Southern Medical University 2016;36(2):180-185
OBJECTIVETo compare the osteogenic differentiation potential and osteoclast capacity between stem cells from human exfoliated deciduous teeth (SHED) in the physiological root resorption period and dental pulp stem cells (DPSCs).
METHODSSHED and DPSCs were isolated, purified and cultured in vitro. The two stem cells were examined with ALP staining at 14 days and with alizarin red staining at 21 days of osteogenic induction, and the expressions of the genes associated with osteogenesis and osteoclastogenesis were detected using real-time PCR.
RESULTSThe isolated SHED and DPSCs both showed an elongate spindle-shaped morphology. After osteogenic induction of the cells, Alizarin red staining visualized a greater number of mineralized nodules in SHED than in DPSCs (P<0.05), and SHED also exhibited a stronger ALP activity than DPSCs (P<0.05). RT-PCR test results showed that the two stem cells expressed RANKL,OCN, ALP, OPG and Runx2 mRNA after osteogenic induction, but the expression levels of Runx2, OCN and ALP were lower in DPSCs than in SHED (P<0.05), and the ratio of RANKL/OPG was significantly higher in SHED (P<0.05).
CONCLUSIONSCompared with DPSCs, SHED has not only the ability of osteogenic differentiation but also an osteoclast capacity, which sheds light on the regulatory role of SHED in physiological root resorption bone remodeling.
Alkaline Phosphatase ; metabolism ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Core Binding Factor Alpha 1 Subunit ; metabolism ; Dental Pulp ; cytology ; Humans ; Osteoclasts ; cytology ; Osteogenesis ; Osteopontin ; metabolism ; RANK Ligand ; metabolism ; Real-Time Polymerase Chain Reaction ; Stem Cells ; cytology ; Tooth, Deciduous ; cytology

Result Analysis
Print
Save
E-mail