1.Cardiomyocyte pyroptosis inhibited by dental pulp-derived mesenchymal stem cells via the miR-19a-3p/IRF-8/MAPK pathway in ischemia-reperfusion.
Yi LI ; Xiang WANG ; Sixian WENG ; Chenxi XIA ; Xuyang MENG ; Chenguang YANG ; Ying GUO ; Zuowei PEI ; Haiyang GAO ; Fang WANG
Chinese Medical Journal 2025;138(18):2336-2346
BACKGROUND:
The protective effect of mesenchymal stem cells (MSCs) on cardiac ischemia-reperfusion (I/R) injury has been widely reported. Dental pulp-derived mesenchymal stem cells (DP-MSCs) have therapeutic effects on various diseases, including diabetes and cirrhosis. This study aimed to determine the therapeutic effects of DP-MSCs on I/R injury and elucidate the underlying mechanism.
METHODS:
Myocardial I/R injury model mice were treated with DP-MSCs or a miR-19a-3p mimic. The infarct volume, fibrotic area, pyroptosis, inflammation level, and cardiac function were measured. Cardiomyocytes exposed to hypoxia-reoxygenation were transfected with the miR-19a-3p mimic, miR-19a-3p inhibitor, or negative control. Pyroptosis and protein expression in the interferon regulatory factor 8/mitogen-activated protein kinase (IRF-8/MAPK) pathway were measured.
RESULTS:
DP-MSCs protected cardiac function in cardiac I/R-injured mice and inhibited cardiomyocyte pyroptosis. The upregulation of miR-19a-3p protected cardiac function, inhibited cardiomyocyte pyroptosis, and inhibited IRF-8/MAPK signaling in cardiac I/R-injured mice. DP-MSCs inhibited cardiomyocyte pyroptosis and the IRF-8/MAPK signaling by upregulating the miR-19a-3p levels in cardiomyocytes injured by I/R.
CONCLUSION
DP-MSCs protected cardiac function by inhibiting cardiomyocyte pyroptosis through miR-19a-3p under I/R conditions.
Animals
;
MicroRNAs/metabolism*
;
Pyroptosis/genetics*
;
Mesenchymal Stem Cells/metabolism*
;
Myocytes, Cardiac/cytology*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Dental Pulp/cytology*
;
Myocardial Reperfusion Injury/therapy*
;
MAP Kinase Signaling System/physiology*
2.Biological characteristics and translational research of dental stem cells.
Qianmin OU ; Zhengshi LI ; Luhan NIU ; Qianhui REN ; Xinyu LIU ; Xueli MAO ; Songtao SHI
Journal of Peking University(Health Sciences) 2025;57(5):827-835
Dental stem cells (DSCs), a distinct subset of mesenchymal stem cells (MSCs), are isolated from dental tissues, such as dental pulp, exfoliated deciduous teeth, periodontal ligament, and apical papilla. They have emerged as a promising source of stem cell therapy for tissue regeneration and autoimmune disorders. The main types of DSCs include dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Each type exhibits distinct advantages: easy access via minimally invasive procedures, multi-lineage differentiation potential, and excellent ethical acceptability. DSCs have demonstrated outstanding clinical efficacy in oral and maxillofacial regeneration, and their long-term safety has been verified. In oral tissue regeneration, DSCs are highly effective in oral tissue regeneration for critical applications such as the restoration of dental pulp vitality and periodontal tissue repair. A defining advantage of DSCs lies in their ability to integrate with host tissues and promote physiological regeneration, which render them a better option for oral tissue regenerative therapies. Beyond oral applications, DSCs also exhibit promising potential in the treatment of systemic diseases, including type Ⅱ diabetes and autoimmune diseases due to their immunomodulatory effects. Moreover, extracellular vesicles (EVs) derived from DSCs act as critical mediators for DSCs' paracrine functions. Possessing regulatory properties similar to their parental cells, EVs are extensively utilized in research targeting tissue repair, immunomodulation, and regenerative therapy-offering a "cell-free" strategy to mitigate the limitations associated with cell-based therapies. Despite these advancements, standardizing large-scale manufacturing, maintaining strict quality control, and clarifying the molecular mechanisms underlying the interaction of DSCs and their EVs with recipient tissues remain major obstacles to the clinical translation of these treatments into broad clinical use. Addressing these barriers will be critical to enhancing their clinical applicability and therapeutic efficacy. In conclusion, DSCs and their EVs represent a transformative approach in regenerative medicine, and increasing clinical evidence supports their application in oral and systemic diseases. Continuous innovation remains essential to unlocking the widespread clinical potential of DSCs.
Humans
;
Dental Pulp/cytology*
;
Translational Research, Biomedical
;
Mesenchymal Stem Cells/cytology*
;
Periodontal Ligament/cytology*
;
Stem Cells/cytology*
;
Regeneration
;
Tooth, Deciduous/cytology*
;
Cell Differentiation
;
Tissue Engineering/methods*
;
Regenerative Medicine
3.NUP62 alleviates senescence and promotes the stemness of human dental pulp stem cells via NSD2-dependent epigenetic reprogramming.
Xiping WANG ; Li WANG ; Linxi ZHOU ; Lu CHEN ; Jiayi SHI ; Jing GE ; Sha TIAN ; Zihan YANG ; Yuqiong ZHOU ; Qihao YU ; Jiacheng JIN ; Chen DING ; Yihuai PAN ; Duohong ZOU
International Journal of Oral Science 2025;17(1):34-34
Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis. However, mechanisms associated with stem cell senescence require further investigation. In this study, we conducted a proteomic analysis of human dental pulp stem cells (HDPSCs) obtained from individuals of various ages. Our findings showed that the expression of NUP62 was decreased in aged HDPSCs. We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo. Conversely, the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs. Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression, we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1. This, in turn, stimulates the transcription of the epigenetic enzyme NSD2. Finally, the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes (HMGA1, HMGA2, and SIRT6). Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.
Humans
;
Dental Pulp/cytology*
;
Nuclear Pore Complex Proteins/genetics*
;
Cellular Senescence/genetics*
;
Stem Cells/metabolism*
;
Epigenesis, Genetic
;
Cell Proliferation
;
Cell Differentiation
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Cells, Cultured
;
Cellular Reprogramming
;
Cell Movement
;
Proteomics
4.Profiling and functional characterization of long noncoding RNAs during human tooth development.
Xiuge GU ; Wei WEI ; Chuan WU ; Jing SUN ; Xiaoshan WU ; Zongshan SHEN ; Hanzhang ZHOU ; Chunmei ZHANG ; Jinsong WANG ; Lei HU ; Suwen CHEN ; Yuanyuan ZHANG ; Songlin WANG ; Ran ZHANG
International Journal of Oral Science 2025;17(1):38-38
The regulatory processes in developmental biology research are significantly influenced by long non-coding RNAs (lncRNAs). However, the dynamics of lncRNA expression during human tooth development remain poorly understood. In this research, we examined the lncRNAs present in the dental epithelium (DE) and dental mesenchyme (DM) at the late bud, cap, and early bell stages of human fetal tooth development through bulk RNA sequencing. Developmental regulators co-expressed with neighboring lncRNAs were significantly enriched in odontogenesis. Specific lncRNAs expressed in the DE and DM, such as PANCR, MIR205HG, DLX6-AS1, and DNM3OS, were identified through a combination of bulk RNA sequencing and single-cell analysis. Further subcluster analysis revealed lncRNAs specifically expressed in important regions of the tooth germ, such as the inner enamel epithelium and coronal dental papilla (CDP). Functionally, we demonstrated that CDP-specific DLX6-AS1 enhanced odontoblastic differentiation in human tooth germ mesenchymal cells and dental pulp stem cells. These findings suggest that lncRNAs could serve as valuable cell markers for tooth development and potential therapeutic targets for tooth regeneration.
Humans
;
RNA, Long Noncoding/metabolism*
;
Odontogenesis/genetics*
;
Tooth Germ/embryology*
;
Cell Differentiation
;
Gene Expression Regulation, Developmental
;
Mesoderm/metabolism*
;
Tooth/embryology*
;
Gene Expression Profiling
;
Sequence Analysis, RNA
;
Dental Pulp/cytology*
5.Isolation methods of exosomes derived from dental stem cells.
Paras AHMAD ; Nathan ESTRIN ; Nima FARSHIDFAR ; Yufeng ZHANG ; Richard J MIRON
International Journal of Oral Science 2025;17(1):50-50
Mesenchymal stem cells are highly regarded for their potential in tissue repair and regenerative medicine due to their multipotency and self-renewal abilities. Recently, mesenchymal stem cells have been redefined as "medical signaling cells," with their primary biological effects mediated through exosome secretion. These exosomes, which contain lipids, proteins, RNA, and metabolites, are crucial in regulating various biological processes and enhancing regenerative therapies. Exosomes replicate the effects of their parent cells while offering benefits such as reduced side effects, low immunogenicity, excellent biocompatibility, and high drug-loading capacity. Dental stem cells, including those from apical papilla, gingiva, dental pulp, and other sources, are key contributors to exosome-mediated regenerative effects, such as tumor cell apoptosis, neuroprotection, angiogenesis, osteogenesis, and immune modulation. Despite their promise, clinical application of exosomes is limited by challenges in isolation techniques. Current methods face issues of complexity, inefficiency, and insufficient purity, hindering detailed analysis. Recent advancements, such as micro-electromechanical systems, alternating current electroosmosis, and serum-free three-dimensional cell cultures, have improved exosome isolation efficacy. This review synthesizes nearly 200 studies on dental stem cell-derived exosomes, highlighting their potential in treating a wide range of conditions, including periodontal diseases, cancer, neurodegenerative disorders, diabetes, and more. Optimized isolation methods offer a path forward for overcoming current limitations and advancing the clinical use of exosome-based therapies.
Exosomes/physiology*
;
Humans
;
Mesenchymal Stem Cells/cytology*
;
Dental Pulp/cytology*
;
Stem Cells/cytology*
;
Tooth/cytology*
6.Effects of cell area on single odontoblast polarization and differentiation via microarray technology.
Huen LI ; Nianzuo YU ; Xiheng LI ; Xiaoduo TANG ; Yalu SUN ; Chao SI ; Junhu ZHANG ; Bei CHANG
West China Journal of Stomatology 2025;43(2):183-189
OBJECTIVES:
This study aimed to explore the impact of cell spreading area on odontoblast polarization and differentiation using micropatterned surfaces ge-nerated by photolithography.
METHODS:
Micropatterned surfaces with differential adhesive properties were prepared using polyethylene glycol diacrylate (PEGDA)-ba-sed photolithography. Human dental pulp stem cells (hD-PSCs) were isolated into single cells and cultured on micropatterned surfaces with areas of 1 800, 2 700, and 3 600 μm2. Immunofluorescence staining was used to observe cell morphology and analyze the relocating of the golgi apparatus and nucleus. Alkaline phosphatase staining was preformed to examine odontogenic differentiation.
RESULTS:
The hDPSCs were successfully isolated and cultured on micropatterned surfaces mimicking the morphology of polarized odontoblasts. Phalloidin staining confirmed that the isolated hDPSCs successfully recapitulated the morphology of predesigned micropatterns. Immunofluorescence staining showed that the polarization and differentiation levels of the hDPSCs with a 3600 μm2 area were significantly higher than those with 1 800 and 2 700 μm2 areas (P<0.05).
CONCLUSIONS
The polarization and differentiation of single hDPSCs increased with the cell areas on micropatterned surfaces.
Cell Differentiation
;
Humans
;
Dental Pulp/cytology*
;
Odontoblasts/cytology*
;
Stem Cells/cytology*
;
Cells, Cultured
;
Cell Polarity
;
Surface Properties
7.In Vitro Evaluation of Human Demineralised Teeth Matrix on Osteogenic Differentiation of Gingival Mesenchymal Stem Cells
Dhanashree Deshpande ; Arvind Karikal ; Chethan Kumar ; Basavarajappa Mohana Kumar ; Veena Shetty
Archives of Orofacial Sciences 2022;17(2):247-258
ABSTRACT
The use of tooth-derived material as a scaffold has gained attention recently due to its ease of availability
and bioactive properties. Hence, the objective of this study was to determine in vitro interaction of human
gingival mesenchymal stem cells (hGMSCs) with human demineralised teeth matrix (hDTM) on osteogenic
potential with or without osteogenic inducers. The hGMSCs were established and characterised on their
morphology, proliferation, population doubling time (PDT), viability, colony-forming ability, expression of
cell surface markers and adipogenic differentiation. Further, the effect of hDTM on the biocompatibility
and osteogenic differentiation ability of hGMSCs was evaluated. The hGMSCs displayed a fibroblast-like
appearance and exhibited a greater proliferative activity. The cells showed > 91% viability, and PDT varied
between 39.34 hours and 62.59 hours. Further, hGMSCs indicated their propensity to form clusters/
colonies, and expressed the markers, such as CD29, CD44, CD73 and CD90, but were negative for CD34
and CD45. When treated with adipogenic induction medium, hGMSCs were able to exhibit the formation
of neutral lipid vacuoles. The hGMSCs cultured with hDTM did not show any cytotoxic changes including
morphology and viability. Mineralisation of calcium nodules was observed in hGMSCs when cultured in
osteogenic induction (OI) medium as an indication of osteogenesis. hGMSCs when cultured with hDTM
confirmed the presence of a mineralised matrix. Further, when the cells were cultured with hDTM along
with OI, they showed slightly enhanced differentiation into osteocytes. In conclusion, hGMSCs were shown
to be biocompatible with hDTM, and demonstrated their enhanced osteogenic potential in the presence of
hDTM and osteogenic supplements.
Mesenchymal Stem Cells
;
Dental Pulp--cytology
;
Dentin
8.In Vitro Evaluation of Human Demineralised Teeth Matrix on Osteogenic Differentiation of Gingival Mesenchymal Stem Cells
Dhanashree Deshpande ; Arvind Karikal ; Chethan Kumar ; Basavarajappa Mohana Kumar ; Veena Shetty
Archives of Orofacial Sciences 2022;17(2):247-258
ABSTRACT
The use of tooth-derived material as a scaffold has gained attention recently due to its ease of availability
and bioactive properties. Hence, the objective of this study was to determine in vitro interaction of human
gingival mesenchymal stem cells (hGMSCs) with human demineralised teeth matrix (hDTM) on osteogenic
potential with or without osteogenic inducers. The hGMSCs were established and characterised on their
morphology, proliferation, population doubling time (PDT), viability, colony-forming ability, expression of
cell surface markers and adipogenic differentiation. Further, the effect of hDTM on the biocompatibility
and osteogenic differentiation ability of hGMSCs was evaluated. The hGMSCs displayed a fibroblast-like
appearance and exhibited a greater proliferative activity. The cells showed > 91% viability, and PDT varied
between 39.34 hours and 62.59 hours. Further, hGMSCs indicated their propensity to form clusters/
colonies, and expressed the markers, such as CD29, CD44, CD73 and CD90, but were negative for CD34
and CD45. When treated with adipogenic induction medium, hGMSCs were able to exhibit the formation
of neutral lipid vacuoles. The hGMSCs cultured with hDTM did not show any cytotoxic changes including
morphology and viability. Mineralisation of calcium nodules was observed in hGMSCs when cultured in
osteogenic induction (OI) medium as an indication of osteogenesis. hGMSCs when cultured with hDTM
confirmed the presence of a mineralised matrix. Further, when the cells were cultured with hDTM along
with OI, they showed slightly enhanced differentiation into osteocytes. In conclusion, hGMSCs were shown
to be biocompatible with hDTM, and demonstrated their enhanced osteogenic potential in the presence of
hDTM and osteogenic supplements.
Mesenchymal Stem Cells
;
Dental Pulp--cytology
;
Dentin
9.Expression of Twist1, SIRT1, FGF2 and TGF-β3 genes and its regulatory effect on the proliferation of placenta, umbilical cord and dental pulp mesenchymal stem cells.
Yao TAN ; Yin DENG ; Keyou PENG ; Zhengzhou SUN ; Jianqiu HUANG ; Xuntong GU ; Fusheng ZHANG ; Hanqing PENG ; Xuechao ZHANG ; Rong ZHANG
Chinese Journal of Medical Genetics 2021;38(2):117-122
OBJECTIVE:
To compare the mRNA level of cell proliferation-related genes Twist1, SIRT1, FGF2 and TGF-β3 in placenta mesenchymal stem cells (PA-MSCs), umbilical cord mensenchymals (UC-MSCs) and dental pulp mesenchymal stem cells (DP-MSCs).
METHODS:
The morphology of various passages of PA-MSCs, UC-MSCs and DP-MSCs were observed by microscopy. Proliferation and promoting ability of the three cell lines were detected with the MTT method. Real-time PCR (RT-PCR) was used to determine the mRNA levels of Twist1, SIRT1, FGF2, TGF-β3.
RESULTS:
The morphology of UC-MSCs and DP-MSCs was different from that of PA-MSCs. Proliferation ability and promoting ability of the PA-MSCs was superior to that of UC-MSCs and DP-MSCs. In PA-MSCs, expression level of Twist1 and TGF-β3 was the highest and FGF2 was the lowest. SIRT1 was highly expressed in UC-MSCs. With the cell subcultured, different expression levels of Twist1, SIRT1, FGF2, TGF-β3 was observed in PA-MSCs, UC-MSCs and DP-MSCs.
CONCLUSION
Up-regulated expression of the Twist1, SIRT1 and TGF-β3 genes can promote proliferation of PA-MSCs, UC-MSCs and DP-MSCs, whilst TGF-β3 may inhibit these. The regulatory effect of Twist1, SIRT1, FGF2 and TGF-β3 genes on PA-MSCs, UC-MSCs and DP-MSCs are different.
Cell Differentiation
;
Cell Proliferation/genetics*
;
Cells, Cultured
;
Dental Pulp/cytology*
;
Female
;
Fibroblast Growth Factor 2/genetics*
;
Humans
;
Mesenchymal Stem Cells/cytology*
;
Nuclear Proteins/genetics*
;
Placenta/cytology*
;
Pregnancy
;
Sirtuin 1/genetics*
;
Transforming Growth Factor beta3/genetics*
;
Twist-Related Protein 1/genetics*
;
Umbilical Cord/cytology*
10.Experimental study on the in vitro osteogenic differentiation of dental pulp stem cells encapsulated in Pluronic F-127 hydrogel.
Abudureheman PAERHATI ; Huojia MUHETAER ; Wufuer DUOLIKUN ; Halike MAIMAITIYIMING ; X W LIU
Chinese Journal of Stomatology 2016;51(7):420-425
OBJECTIVETo evaluate the biocompatibility and viability of nonionic triblock copolymer Pluronic F-127 as a cell scaffold for osteogenic differentiation of dental pulp stem cells(DPSC).
METHODSDPSC were obtained via enzymatic digestion method and purified bylimited dilution method. The freeze dried hydrogel of 20% Pluronic F-127 was prepared and itsstructurewas observed usingscanning electron microscopy(SEM). After the encapsulation of cells of passage 3 in Pluronic F-127, the effects of hydrogel on the proliferations of DPSC were assessed with methyl thiazolyl terazolium(MTT) after one day and 3, 5, 7 days of incubations, respectively. On day 14, osteogenic abilities of DPSC encapsulated in the hydrogel were estimated by means of alizarin red S, immunocytochemical staining and real-time quantitative PCR(RT-qPCR).
RESULTSDPSC were isolated and cultured successfully in the present study. SEM observations showed that porous structures which might be suitable for cell culture. A570 values of MTT were then normalized. A570 values of the cells in 2D cultures were 0.30±0.06, 0.30±0.17, 0.35±0.04 and 0.25±0.06 and A570 values of DPSC in 3D cultures were 0.36±0.06, 0.54±0.18, 0.70±0.10 and 0.32±0.10 on day 1, 3, 5 and 7, respectively. A570 value peaks were found on day 5 in both groups. The proliferation of 3D cultured DPSC was higher than that of 2D cultured cells(P<0.05). After 14 days of osteogenic induction, there were no calcium nodules observed in the control group and the numbers of calcium nodulesin the 2D and 3D groups had no significant difference(P>0.05). Inmmunocytochemical staining demonstrated strong expression of osteoblast marker Runt-related transcription factor 2(RUNX2), type Ⅰ collagen(Col-Ⅰ) and relatively low expression of osteocalcin(OCN). Moreover, RT-qPCR showed no differences between the relative expression of ALP, RUNX-2, OCN in the 2D and 3D groups (P>0.05), but a higher relative expression of Col-Ⅰ was observed in the 3D group(P=0.023).
CONCLUSIONSPluronic F-127 is a promising cell scaffold or cell carrier for the osteobalst differentiation of dental pulp stem cells.
Cell Culture Techniques ; Cell Differentiation ; Cells, Cultured ; Collagen Type I ; metabolism ; Core Binding Factor Alpha 1 Subunit ; metabolism ; Dental Pulp ; cytology ; Humans ; Hydrogel, Polyethylene Glycol Dimethacrylate ; Osteoblasts ; metabolism ; Osteocalcin ; metabolism ; Osteogenesis ; Poloxamer ; Stem Cells ; cytology ; Tissue Scaffolds


Result Analysis
Print
Save
E-mail