1.Application of blood conservation measures with different red blood cell transfusion volumes in obstetrics and their impact on postpartum outcomes
Huimin DENG ; Fengcheng XU ; Meiting LI ; Lan HU ; Xiao WANG ; Shiyu WANG ; Xiaofei YUAN ; Jun ZHENG ; Zehua DONG ; Yuanshan LU ; Shaoheng CHEN
Chinese Journal of Blood Transfusion 2025;38(5):691-698
Objective: To evaluate the application of blood conservation measures in obstetric patients with different red blood cell transfusion volumes and to assess the impact of different transfusion volumes on postpartum outcomes. Methods: A retrospective investigation was conducted on 448 obstetric patients who received blood transfusions at the Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine from January 2016 to December 2022. Patients were divided into four groups (1-2 units group, 3-4 units group, 5-6 units group, and >6 units group) based on the volumes of red blood cells (RBCs) transfused during and within 7 days after delivery. The maternal physiological indicators, pre- and postpartum laboratory test indicators, obstetric complications, application of blood conservation measures, use of blood products, and postpartum outcomes were reviewed. The clinical characteristics, application of blood conservation measures, and their impact on postpartum outcomes were compared among different transfusion groups. Results: There were statistically significant differences in the multivariate logistic analysis of history of previous cesarean section (OR=1.781), eclampsia/pre-eclampsia/(OR=1.972) and postpartum blood loss>1 000 mL(OR=1.699)(P<0.05) among different transfusion groups. In terms of blood conservation measures, the more RBCs transfused, the higher the rate of mothers receiving blood conservation measures such as balloon occlusion, arterial ligation, autologous blood transfusion with a cell saver, and hysterectomy. With the increase in the volume of RBCs transfusion, the demand for fresh frozen plasma(FFP), cryoprecipitate, and platelet transfusions also increased. The hospitalization days for the four groups of parturients were 6.0 (4.0-9.0), 7.5 (5.0-14.8), 7.0 (4.5-13.0) and 11.0 (9.0-20.5), respectively (P<0.05) and the rates of ICU transfer were 2.0% (5/250), 9.4% (12/128),18.2% (6/33) and 51.4% (19/37), respectively (P<0.05). Both increased significantly with the increase in the volume of RBCs transfusion, and the differences between groups were statistically significant. Conclusion: Parturients who received higher volume of RBCs had multiple risks factors for bleeding before childbirth, had higher postpartum blood loss, and had a higher rate of application of various blood conservation measures. In addition, an increase in the volume of RBCs transfusion may have adverse effects on postpartum recovery.
2.Mechanism of Huanglian Wendantang on Damp-heat Type Diabetes Enteropathy Rats Based on TGR5/GLP-1 Signaling Pathway and Intestinal Flora
Yujin WANG ; Yulong QIE ; Hua JIANG ; Chen YUAN ; Xirui DENG ; Xuelian MENG ; Wenli WANG ; Yanjin SU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):10-18
ObjectiveTo explore the mechanism of Huanglian Wendantang on damp-heat type diabetes enteropathy rats based on the G protein coupled bile acid receptor 5/glucagon like peptide-1 (TGR5/GLP-1) signaling pathway and intestinal flora. MethodsA total of 72 male Sprague Dawley (SD) rats were adaptively fed for one week. Twelve SD rats were randomly selected as a blank group and fed with an ordinary diet. The rest of the SD rats were fasted for 12 hours without water. A rat model with damp-heat type diabetes enteropathy was made by left intraperitoneal injection of streptozotocin (55 mg·kg-1) and high sugar and high fat diet (20% sucrose solution + high fat diet) in a humid and hot environment (artificial climate box: temperature 30-34 ℃, relative humidity: 85%-95%). After successful modeling, the rats were randomly divided into a model group, a metformin group (200 mg·kg-1), low-dose, medium-dose, and high-dose Huanglian Wendantang groups (7.10, 14.20, 28.39 g·kg-1), with 12 rats in each group. The normal group and the model group were orally administered with physiological saline once a day for 6 consecutive weeks. During the observation period, the weight and blood glucose levels of rats were measured and recorded weekly. After the administration, fresh feces were collected from rats, and 16S rRNA sequencing technology was used to study the differences and changes in intestinal flora among different groups. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum of rats were detected by enzyme-linked immunosorbent assay (ELISA), and the pathological morphological changes of colon tissue were examined. The expression of TGR5 and GLP-1 in colon tissue was detected by immunohistochemistry, and the expression of TGR5 and GLP-1 proteins in colon tissue was measured by Western blot. ResultsCompared with the blank group, the model group showed a decrease in body weight, an increase in blood glucose, and significant damp-heat symptoms. The levels of IL-6 and TNF-α in serum were significantly increased (P<0.01). The expression of TGR5 and GLP-1 was decreased (P<0.01), and the pathogenic bacteria were increased. Compared with the model group, the treatment groups exhibited improvements in body weight, blood glucose levels, and damp-heat syndrome in rats. Among them, the high-dose group of Huanglian Wendantang displayed the most significant improvement effect, with significantly reduced inflammation levels (P<0.01) and elevated expression of TGR5 and GLP-1 (P<0.01). Colonic pathological sections showed that Huanglian Wendantang could effectively ameliorate colonic pathological changes. The 16S rRNA sequencing result indicated a significant increase in beneficial bacteria in the treatment groups. ConclusionHuanglian Wendantang can effectively ameliorate the damp-heat symptoms and blood glucose levels in rats with damp-heat type diabetes enteropathy, and it may exert an effect by regulating the TGR5/GLP-1 signaling pathway and intestinal flora disorder.
3.Therapeutic effect and mechanism of the topical preparation of baicalein on atopic dermatitis
Deng WANG ; Zhongying FAN ; Qinglong GUO ; Xi LI ; Yujie BAI ; Libin WEI ; Yuan HE
Journal of China Pharmaceutical University 2025;56(1):99-109
To evaluate the therapeutic effect of baicalein topical preparation on atopic dermatitis, we first constructed two atopic dermatitis-like mouse models induced by calcipotriol and 1-fluoro-2,4-dinitrobenzene to assess their therapeutic effect with skin tissue staining and other experiments. It was found that topical preparation of baicalein could alleviate epidermal thickening of diseased skin tissues, repair damaged skin barrier proteins, and inhibit T helper 2 cells (Th2) infiltration and mast cell infiltration and activation in lesional sites. Cyberpharmacology was utilized to analyze whether baicalein could treat atopic dermatitis by interfering with multiple pathogenesis-associated pathways. Results indicated that baicalein reduced the mRNA levels of inflammatory factors and inhibited the phosphorylation of NF-κB p65 and STAT1 proteins in keratinocyte cells. Together, the topical preparation of baicalein may be effective in alleviating atopic dermatitis-like symptoms in mice by down-regulating the phosphorylation level of NF-κB in keratinocytes, thereby decreasing the expression of inflammatory factors in keratinocytes, which provides an idea and a theoretical basis for the topical preparation of baicalein for the treatment of inflammatory skin diseases such as atopic dermatitis.
4.Concordance and pathogenicity of copy number variants detected by non-invasive prenatal screening in 38,611 pregnant women without fetal structural abnormalities.
Yunyun LIU ; Jing WANG ; Ling WANG ; Lin CHEN ; Dan XIE ; Li WANG ; Sha LIU ; Jianlong LIU ; Ting BAI ; Xiaosha JING ; Cechuan DENG ; Tianyu XIA ; Jing CHENG ; Lingling XING ; Xiang WEI ; Yuan LUO ; Quanfang ZHOU ; Ling LIU ; Qian ZHU ; Hongqian LIU
Chinese Medical Journal 2025;138(4):499-501
5.Intestinal metabolites in colitis-associated carcinogenesis: Building a bridge between host and microbiome.
Yating FAN ; Yang LI ; Xiangshuai GU ; Na CHEN ; Ye CHEN ; Chao FANG ; Ziqiang WANG ; Yuan YIN ; Hongxin DENG ; Lei DAI
Chinese Medical Journal 2025;138(16):1961-1972
Microbial-derived metabolites are important mediators of host-microbial interactions. In recent years, the role of intestinal microbial metabolites in colorectal cancer has attracted considerable attention. These metabolites, which can be derived from bacterial metabolism of dietary substrates, modification of host molecules such as bile acids, or directly from bacteria, strongly influence the progression of colitis-associated cancer (CAC) by regulating inflammation and immune response. Here, we review how microbiome metabolites short-chain fatty acids (SCFAs), secondary bile acids, polyamines, microbial tryptophan metabolites, and polyphenols are involved in the tumorigenesis and development of CAC through inflammation and immunity. Given the heated debate on the metabolites of microbiota in maintaining gut homeostasis, serving as tumor molecular markers, and affecting the efficacy of immune checkpoint inhibitors in recent years, strategies for the prevention and treatment of CAC by targeting intestinal microbial metabolites are also discussed in this review.
Humans
;
Gastrointestinal Microbiome/physiology*
;
Animals
;
Carcinogenesis/metabolism*
;
Colitis-Associated Neoplasms/microbiology*
;
Fatty Acids, Volatile/metabolism*
;
Bile Acids and Salts/metabolism*
;
Colitis/microbiology*
6.Combined oxidative phosphorylation deficiency type 7 caused by C12orf65 gene mutations: a case report and literature review.
Xiao-Yi CHEN ; Yong-Jie ZHU ; Jie DENG ; Yan-Li MA ; Jun-Fang SUO ; Yuan WANG ; Yuan-Ning MA
Chinese Journal of Contemporary Pediatrics 2025;27(2):205-211
OBJECTIVES:
To investigate the clinical features and gene mutation characteristics of combined oxidative phosphorylation deficiency type 7 (COXPD7) caused by mutations in the C12orf65 gene, and to enhance the awareness of this disease.
METHODS:
A child diagnosed with COXPD7 in the Department of Neurology, Children's Hospital Affiliated to Zhengzhou University in 2021 was included, along with 10 patients reported in the literature. All subjects were analyzed for their genotypes and clinical phenotypes.
RESULTS:
A total of 11 patients with COXPD7 were included, comprising 1 reported in this study and 10 from the literature. Among the 11 patients, 9 had homozygous mutations in the C12orf65 gene, while 2 had compound heterozygous mutations, which were identified as frameshift or nonsense mutations. The age of onset ranged from 1 day to 2 years, and clinical manifestations included optic nerve atrophy and delays in intellectual and motor development. Eight patients exhibited external ophthalmoplegia, and five patients displayed spastic paralysis. Cranial magnetic resonance imaging revealed optic nerve atrophy in all 11 patients, abnormal brainstem signals in 10 patients, and a lactate peak on brainstem magnetic resonance spectroscopy scans in 3 patients.
CONCLUSIONS
COXPD7 associated with the C12orf65 gene results from homozygous or compound heterozygous mutations, with primary clinical manifestations of optic nerve atrophy and delays in intellectual and motor development. Some patients may also present with spastic paralysis or external ophthalmoplegia. Cranial imaging reveals symmetrical abnormal signals in bilateral basal ganglia and brainstem, and a lactate peak is observed on brainstem magnetic resonance spectroscopy scans.
Child, Preschool
;
Female
;
Humans
;
Infant
;
Male
;
Mitochondrial Diseases/genetics*
;
Mitochondrial Proteins/genetics*
;
Mutation
;
Oxidative Phosphorylation
;
Infant, Newborn
7.A preclinical evaluation and first-in-man case for transcatheter edge-to-edge mitral valve repair using PulveClip® transcatheter repair device.
Gang-Jun ZONG ; Jie-Wen DENG ; Ke-Yu CHEN ; Hua WANG ; Fei-Fei DONG ; Xing-Hua SHAN ; Jia-Feng WANG ; Ni ZHU ; Fei LUO ; Peng-Fei DAI ; Zhi-Fu GUO ; Yong-Wen QIN ; Yuan BAI
Journal of Geriatric Cardiology 2025;22(2):265-269
8.Bear Bile Powder Ameliorates LPS-Induced Acute Lung Injury by Inhibiting CD14 Pathway and Improving Intestinal Flora: Exploration of "Fei (Lung)-Dachang (Large Intestine) Interaction" Theory.
Long CHENG ; Hui-Ling TIAN ; Hong-Yuan LEI ; Ying-Zhou WANG ; Ma-Jing JIAO ; Yun-Hui LIANG ; Zhi-Zheng WU ; Xu-Kun DENG ; Yong-Shen REN
Chinese journal of integrative medicine 2025;31(9):821-829
OBJECTIVE:
To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism.
METHODS:
The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1β in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS).
RESULTS:
UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05).
CONCLUSIONS
BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.
Animals
;
Acute Lung Injury/pathology*
;
Lipopolysaccharides
;
Ursidae
;
Gastrointestinal Microbiome/drug effects*
;
Bile/chemistry*
;
Lipopolysaccharide Receptors/metabolism*
;
Powders
;
Male
;
Lung/drug effects*
;
Mice
;
Peroxidase/metabolism*
;
Signal Transduction/drug effects*
;
Cytokines/metabolism*
9.Nanoengineered cargo with targeted in vivo Foxo3 gene editing modulated mitophagy of chondrocytes to alleviate osteoarthritis.
Manyu CHEN ; Yuan LIU ; Quanying LIU ; Siyan DENG ; Yuhan LIU ; Jiehao CHEN ; Yaojia ZHOU ; Xiaolin CUI ; Jie LIANG ; Xingdong ZHANG ; Yujiang FAN ; Qiguang WANG ; Bin SHEN
Acta Pharmaceutica Sinica B 2025;15(1):571-591
Mitochondrial dysfunction in chondrocytes is a key pathogenic factor in osteoarthritis (OA), but directly modulating mitochondria in vivo remains a significant challenge. This study is the first to verify a correlation between mitochondrial dysfunction and the downregulation of the FOXO3 gene in the cartilage of OA patients, highlighting the potential for regulating mitophagy via FOXO3 gene modulation to alleviate OA. Consequently, we developed a chondrocyte-targeting CRISPR/Cas9-based FOXO3 gene-editing tool (FoxO3) and integrated it within a nanoengineered 'truck' (NETT, FoxO3-NETT). This was further encapsulated in injectable hydrogel microspheres (FoxO3-NETT@SMs) to harness the antioxidant properties of sodium alginate and the enhanced lubrication of hybrid exosomes. Collectively, these FoxO3-NETT@SMs successfully activate mitophagy and rebalance mitochondrial function in OA chondrocytes through the Foxo3 gene-modulated PINK1/Parkin pathway. As a result, FoxO3-NETT@SMs stimulate chondrocytes proliferation, migration, and ECM production in vitro, and effectively alleviate OA progression in vivo, demonstrating significant potential for clinical applications.
10.Identification of a JAK-STAT-miR155HG positive feedback loop in regulating natural killer (NK) cells proliferation and effector functions.
Songyang LI ; Yongjie LIU ; Xiaofeng YIN ; Yao YANG ; Xinjia LIU ; Jiaxing QIU ; Qinglan YANG ; Yana LI ; Zhiguo TAN ; Hongyan PENG ; Peiwen XIONG ; Shuting WU ; Lanlan HUANG ; Xiangyu WANG ; Sulai LIU ; Yuxing GONG ; Yuan GAO ; Lingling ZHANG ; Junping WANG ; Yafei DENG ; Zhaoyang ZHONG ; Youcai DENG
Acta Pharmaceutica Sinica B 2025;15(4):1922-1937
The Janus kinase/signal transducers and activators of transcription (JAK-STAT) control natural killer (NK) cells development and cytotoxic functions, however, whether long non-coding RNAs (lncRNAs) are involved in this pathway remains unknown. We found that miR155HG was elevated in activated NK cells and promoted their proliferation and effector functions in both NK92 and induced-pluripotent stem cells (iPSCs)-derived NK (iPSC-NK) cells, without reliance on its derived miR-155 and micropeptide P155. Mechanistically, miR155HG bound to miR-6756 and relieved its repression of JAK3 expression, thereby promoting the JAK-STAT pathway and enhancing NK cell proliferation and function. Further investigations disclosed that upon cytokine stimulation, STAT3 directly interacts with miR155HG promoter and induces miR155HG transcription. Collectively, we identify a miR155HG-mediated positive feedback loop of the JAK-STAT signaling. Our study will also provide a power target regarding miR155HG for improving NK cell generation and effector function in the field of NK cell adoptive transfer therapy against cancer, especially iPSC-derived NK cells.

Result Analysis
Print
Save
E-mail