1.Effect of Matrix Metallopeptidase 13 on the Function of Mouse Bone Marrow-derived Dendritic Cells.
Xiao-Dong LI ; Xin-Rui ZHANG ; Zhi-Hao LI ; Yang YANG ; Duo ZHANG ; Heng ZHENG ; Shu-Ying DONG ; Juan CHEN ; Xian-Dong ZENG
Chinese Medical Journal 2017;130(6):717-721
BACKGROUNDDendritic cells are professional antigen-presenting cells found in an immature state in epithelia and interstitial space, where they capture antigens such as pathogens or damaged tissue. Matrix metallopeptidase 13 (MMP-13), a member of the collagenase subfamily, is involved in many different cellular processes and is expressed in murine bone marrow-derived dendritic cells (DCs). The function of MMP-13 in DCs is not well understood. Here, we investigated the effect of MMP-13 on DC maturation, apoptosis, and phagocytosis.
METHODSBone marrow-derived dendritic cells were obtained from C57BL/6 mice. One short-interfering RNA specific for MMP-13 was used to transfect DCs. MMP-13-silenced DCs and control DCs were prepared, and apoptosis was measured using real-time polymerase chain reaction and Western blotting. MMP-13-silenced DCs and control DCs were analyzed for surface expression of CD80 and CD86 and phagocytosis capability using flow cytometry.
RESULTSCompared to the control DCs, MMP-13-silenced DCs increased expression of anti-apoptosis-related genes, BAG1 (control group vs. MMP-13-silenced group: 4.08 ± 0.60 vs. 6.11 ± 0.87, P = 0.008), BCL-2 (control group vs. MMP-13-silenced group: 7.54 ± 0.76 vs. 9.54 ± 1.29, P = 0.036), and TP73 (control group vs. MMP-13-silenced group: 4.33 ± 0.29 vs. 5.60 ± 0.32, P = 0.001) and decreased apoptosis-related genes, CASP1 (control group vs. MMP-13-silenced group: 3.79 ± 0.67 vs. 2.54 ± 0.39, P = 0.019), LTBR (control group vs. MMP-13-silenced group: 9.23 ± 1.25 vs. 6.24 ± 1.15, P = 0.012), and CASP4 (control group vs. MMP-13-silenced group: 2.07 ± 0.56 vs. 0.35 ± 0.35, P = 0.002). Protein levels confirmed the same expression pattern. MMP-13-silenced groups decreased expression of CD86 on DCs; however, there was no statistical difference in CD80 surface expression. Furthermore, MMP-13-silenced groups exhibited weaker phagocytosis capability.
CONCLUSIONThese results indicate that MMP-13 inhibition dampens DC maturation, apoptosis, and phagocytosis.
Animals ; Apoptosis ; drug effects ; physiology ; Bone Marrow Cells ; cytology ; Dendritic Cells ; cytology ; drug effects ; metabolism ; Female ; Lipopolysaccharides ; pharmacology ; Matrix Metalloproteinase 13 ; metabolism ; physiology ; Mice ; Mice, Inbred C57BL ; RNA, Small Interfering
2.Acute Myeloid Leukemia With MLL Rearrangement and CD4+/CD56+ Expression can be Misdiagnosed as Blastic Plasmacytoid Dendritic Cell Neoplasm: Two Case Reports.
Ju Mee LEE ; In Suk KIM ; Jeong Nyeo LEE ; Sang Hyuk PARK ; Hyung Hoi KIM ; Chulhun L CHANG ; Eun Yup LEE ; Hye Ran KIM ; Seung Hwan OH ; Sae Am SONG
Annals of Laboratory Medicine 2016;36(5):494-497
No abstract available.
Adult
;
Antigens, CD4/*metabolism
;
Antigens, CD56/*metabolism
;
Bone Marrow/metabolism/pathology
;
Dendritic Cells/cytology/*metabolism
;
Diagnostic Errors
;
Exons
;
Female
;
Flow Cytometry
;
Gene Rearrangement
;
Hematologic Neoplasms/diagnosis
;
Histone-Lysine N-Methyltransferase/genetics
;
Humans
;
Immunohistochemistry
;
In Situ Hybridization, Fluorescence
;
Leukemia, Myeloid, Acute/*diagnosis
;
Male
;
Middle Aged
;
Myeloid-Lymphoid Leukemia Protein/genetics
;
Real-Time Polymerase Chain Reaction
;
Sequence Analysis, DNA
;
Transcription Factors/genetics
;
Translocation, Genetic
3.Inducing Effect of Modified Cytokine Cocktail on Dendritic Cells.
Wei XU ; Bao-Long WANG ; Qiong HUANG ; Zhi-Feng ZHOU ; Peng LUO
Journal of Experimental Hematology 2016;24(1):197-204
OBJECTIVETo investigate the inducing effect of 'modified' cytokine cocktail on the dendritic cell maturation and migration capability.
METHODSPBMNC were isolated from human peripheral blood stem cell (PBSC) by using density gradient centrifugation, the immature DC (imDC) were induced by using GM-CSF and IL-4 in vitro. Total A549 RNA was transfected into imDC by using electroporation, which was stimulated to matuation by the "gold standard" cytokine cocktail and "modified" cytokine cocktail, respectively. The expression of DC surface markers (CD11c, HLA-DR, CD80, CD83 and CD86) and chemokine receptor (CCR5, CCR7 and CXCR4) were detected by flow cytometry; the mRNA expression levels of DC chemokine receptor (CCR2, CCR5, CCR7, CXCR3 and CXCR4) and chemokine (CCL2, CCL3, CCL5, CCL19, CCL21, CXCL10 and CXCL12) were detected by RT-PCR.
RESULTSAs compared with "gold standard cytokine cocktail", the "modified" cytokine cocktail-induced DC expressed higher levels of surface markers (CD11c, HLA-DR, CD80, CD83 and CD86), chemokine receptors (CXCR4) and chemokine (CCL2, CCL3, CCL5, CCL19, CCL21, CXCL10 and CXCL12).
CONCLUSIONThe "modified" cytokine cocktail can more effectively induce the DC maturation, enhace the migratory capability of DC and more generate the immunostimulatory DC, when compared with the "gold standard" cytokine cocktail effect.
Antigens, CD ; metabolism ; Cell Culture Techniques ; Cell Differentiation ; Chemokines ; metabolism ; Cytokines ; pharmacology ; Dendritic Cells ; cytology ; drug effects ; Flow Cytometry ; Granulocyte-Macrophage Colony-Stimulating Factor ; pharmacology ; Humans ; Interleukin-4 ; pharmacology ; Receptors, Chemokine ; metabolism
4.Death receptor 6 is a novel plasmacytoid dendritic cell-specific receptor and modulates type I interferon production.
Jingyun LI ; Qiumei DU ; Rui HU ; Yanbing WANG ; Xiangyun YIN ; Haisheng YU ; Peishuang DU ; Joël PLUMAS ; Laurence CHAPEROT ; Yong-Jun LIU ; Liguo ZHANG
Protein & Cell 2016;7(4):291-294
Dendritic Cells
;
cytology
;
metabolism
;
Enzyme-Linked Immunosorbent Assay
;
HEK293 Cells
;
Humans
;
Interferon Regulatory Factor-7
;
metabolism
;
Interferon Type I
;
metabolism
;
Interferon-gamma
;
analysis
;
Interleukin-6
;
analysis
;
Oligonucleotides
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Real-Time Polymerase Chain Reaction
;
Receptors, Tumor Necrosis Factor
;
antagonists & inhibitors
;
genetics
;
metabolism
5.Heparin-treated dendritic cells promote Th0 to Th1 differentiation via the Toll-like receptor 3 in peripheral blood monocytes of patients with chronic hepatitis B.
Weihong SUN ; Xiaofang WEI ; Peng ZHAO ; Airong NIU ; Changyou LI ; Daiqing GAO
Chinese Journal of Hepatology 2015;23(9):658-662
OBJECTIVETo investigate the mechanisms underlying the ability ofheparin-treated dendritic cells (DCs) to promote Th0 to Th1 differentiation in chronic hepatitis B (CHB).
METHODSPeripheral blood mononuclear cells (PBMCs) were isolated from CHB patients and cultured in RPMI-1640 with recombinant GM-CSF and IL-4 with or without heparin to obtain DCs for study. The levels of Toll-like receptors (TLRs) on the DCs were measured using FACS and qPCR techniques.DC subsets with high expression of TLRs were selected for analysis of functional changes by treatment with the corresponding TLR-siRNA. The CD4+ T cell subpopulation was purified from peripheral blood by Dynal immunomagnetic beads, and then the production of IL-12 by DCs in the presence of poly(I:C) or R848 and ofIFN and IL-4 by Th cells co-cultured with DCs was evaluated by ELISA. The t-test was used for statistical analysis.
RESULTSTLR3 expression, and not expression of TLR 7 or TLR8,was significantly increased in heparin-treated DCs as compared to levels detected in the DCs without heparin treatment (t =2.849,P less than 0.05;t =3.027,P less than 0.05). The level of IL-12 produced by heparin-treated DCs stimulated with poly(I:C) was obviously higher than that produced by DCs without heparin treatment and stimulated with poly(I: C) (t =8.68,P less than 0.01) or with R848 (t =19.01,P less than 0.01). However, the IL-12 production by TLR3-siRNA transfected-DCs was significantly reduced (t =31.49, P less than 0.01).When Th cells from allogenic patients with CHB were co-cultured with the TLR3-siRNA transfectedDCs, the frequency ofCD4+ IFN+ cells was significantly reduced (1.64+/-0.57% vs.6.31+/-0.88%,P less than 0.01),as was the capability of Thl to generate IFNg (t =20.83,Pless than 0.01).
CONCLUSIONHeparin may have up-regulated the TLR3 expression level of DCs, and sequentially promoted Th0 to Th1 differentiation.
CD4-Positive T-Lymphocytes ; cytology ; Cell Differentiation ; Coculture Techniques ; Dendritic Cells ; cytology ; Granulocyte-Macrophage Colony-Stimulating Factor ; pharmacology ; Heparin ; pharmacology ; Hepatitis B, Chronic ; immunology ; Humans ; Interferon-gamma ; metabolism ; Interleukin-12 ; metabolism ; Interleukin-4 ; pharmacology ; Monocytes ; cytology ; Recombinant Proteins ; pharmacology ; Toll-Like Receptor 3 ; metabolism
6.Effect of bifunctional IL2-GMCSF in promoting dendritic cell activation in vitro in simulated tumor-induced immune suppression.
Qian WEN ; Wenjing XIONG ; Sudong LIU ; Chaoying ZHOU ; Li MA
Journal of Southern Medical University 2015;35(9):1239-1244
OBJECTIVETo test the effect of bifunctional molecule IL2-GMCSF in promoting the activation of dendritic cells (DCs) cultured in tumor conditioned medium.
METHODSWe prepared a tumor conditioned medium using mouse melanoma cell line B16F10 supplemented with IL2-GMCSF, GM-CSF, IL-2, or the combination of the latter two. After culturing mouse DC cell line DC2.4 in the conditioned medium for 24 h, the DCs were examined for phagocytosis, proliferation, maturation phenotype, cytokine secretion, and signal pathway activation.
RESULTSDC2.4 cells displayed characteristics of immature DCs. After cell culture in the conditioned medium, the cells showed enhanced phagocytosis but significantly suppressed cell proliferation activity. Culture in the conditioned medium also promoted DC cell maturation and secretion of macrophage-derived chemokine (MDC), but inhibited IL-12 secretion. Supplementation of the conditioned medium with IL2-GMCSF promoted phagocytosis, proliferation, maturation, and cytokine (including both IL-12 and MDC) secretion of DC2.4 cells. Compared with GM-CSF, IL2-GMCSF induced a higher level of NF-κB signal pathway activation but suppressed STAT3 activation.
CONCLUSIONCompared with GM-CSF, IL2-GMCSF can better promote DC activation in the context of tumor-induced immune suppression, and thus shows potentials in anti-tumor therapy.
Animals ; Cell Differentiation ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; Chemokine CCL22 ; metabolism ; Culture Media, Conditioned ; chemistry ; Dendritic Cells ; cytology ; drug effects ; Gene Expression Regulation, Neoplastic ; Granulocyte-Macrophage Colony-Stimulating Factor ; pharmacology ; Immune Tolerance ; Interleukin-12 ; metabolism ; Interleukin-2 ; pharmacology ; Melanoma, Experimental ; pathology ; Mice ; NF-kappa B ; metabolism ; Phagocytosis ; STAT3 Transcription Factor ; metabolism ; Signal Transduction
7.Human soluble dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin inhibits phagocytosis of Staphylococcus aureus by immature dendritic cells.
Hui-Jie LI ; Tian-Yu XU ; Jia ZHOU ; Ling-Yan ZHU ; Li-Yun ZHANG ; Xiao LU ; Zheng-Liang CHEN
Journal of Southern Medical University 2015;35(4):544-548
OBJECTIVETo study the effect and mechanism of soluble dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (sDC-SIGN) on the phagocytosis of Staphylococcus aureus (S. aureus) by immature dendritic cells (imDCs).
METHODSFlow cytometry was employed to examine the effect of sDC-SIGN on the phagocytosis of S. aureus by imDCs. Enzyme-linked immunosorbent assay (ELISA) was used to analyze the binging of sDC-SIGN to S. aureus, lipoteichoic acid (LTA) and lipopolysaccharides (LPS) and investigate the effect of the ligands mannan and LTA and anti-DC-SIGN antibodies 1C6 and 4H3 on the binging of sDC-SIGN to S. aureus.
RESULTSsDC-SIGN inhibited the phagocytosis of S. aureus by imDCs. sDC-SIGN bound to S. aureus in a Ca(2+)-dependent manner. sDC-SIGN concentration-dependently bound to LTA, but not to LTA, and the binging of sDC-SIGN to S. aureus was blocked by mannan, LTA, 1C6 and 4H3.
CONCLUSIONsDC-SIGN preferentially binds to the carbohydrate constituents on S. aureus to affect the binding between membrane-bound DC-SIGN and S. aureus, thus suppressing the phagocytosis of S. aureus by imDCs.
Cell Adhesion Molecules ; metabolism ; Dendritic Cells ; cytology ; metabolism ; Humans ; Lectins, C-Type ; metabolism ; Lipopolysaccharides ; Phagocytosis ; Receptors, Cell Surface ; metabolism ; Staphylococcus aureus ; Teichoic Acids
8.Andrographolide as an anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway.
Bin YU ; Cong-qi DAI ; Zhen-you JIANG ; En-qing LI ; Chen CHEN ; Xian-lin WU ; Jia CHEN ; Qian LIU ; Chang-lin ZHAO ; Jin-xiong HE ; Da-hong JU ; Xiao-yin CHEN
Chinese journal of integrative medicine 2014;20(7):540-545
OBJECTIVETo observe the anti-virus effects of andrographolide (AD) on the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) signaling pathway when immunological cells were infected with H1N1.
METHODSLeukomonocyte was obtained from umbilical cord blood by Ficoll density gradient centrifugation, and immunological cells were harvested after cytokines stimulation. Virus infected cell model was established by H1N1 co-cultured with normal human bronchial epithelial cell line (16HBE). The optimal concentration of AD was defined by methyl-thiazolyl-tetrazolium (MTT) assay. After the virus infected cell model was established, AD was added into the medium as a treatment intervention. After 24-h co-culture, cell supernatant was collected for interferon gamma (IFN-γ) and interleukin-4 (IL-4) enzyme-linked immunosorbent assay (ELISA) detection while immunological cells for real-time polymerase chain reaction (RT-PCR).
RESULTSThe optimal concentration of AD for anti-virus effect was 250 μg/mL. IL-4 and IFN-γ in the supernatant and mRNA levels in RLRs pathway increased when cells was infected by virus, RIG-I, IFN-β promoter stimulator-1 (IPS-1), interferon regulatory factor (IRF)-7, IRF-3 and nuclear transcription factor κB (NF-κB) mRNA levels increased significantly (P<0.05). When AD was added into co-culture medium, the levels of IL-4 and IFN-γ were lower than those in the non-interference groups and the mRNA expression levels decreased, RIG-I, IPS-1, IRF-7, IRF-3 and NF-κB decreased significantly in each group with significant statistic differences (P<0.05).
CONCLUSIONSThe RLRs mediated viral recognition provided a potential molecular target for acute viral infections and andrographolide could ameliorate H1N1 virus-induced cell mortality. And the antiviral effects might be related to its inhibition of viral-induced activation of the RLRs signaling pathway.
Adaptor Proteins, Signal Transducing ; genetics ; metabolism ; Antiviral Agents ; pharmacology ; Cells, Cultured ; Coculture Techniques ; DEAD Box Protein 58 ; DEAD-box RNA Helicases ; genetics ; metabolism ; Dendritic Cells ; drug effects ; immunology ; virology ; Diterpenes ; pharmacology ; Fetal Blood ; cytology ; Humans ; Influenza A Virus, H1N1 Subtype ; drug effects ; immunology ; Influenza, Human ; drug therapy ; immunology ; virology ; Interferon-beta ; genetics ; metabolism ; Interferon-gamma ; metabolism ; Interleukin-4 ; metabolism ; Leukocytes, Mononuclear ; drug effects ; immunology ; virology ; Macrophages ; drug effects ; virology ; NF-kappa B ; genetics ; metabolism ; Promoter Regions, Genetic ; drug effects ; immunology ; RNA, Messenger ; metabolism ; Signal Transduction ; drug effects ; genetics ; immunology
9.DC-derived exosomes induce osteogenic differentiation of mesenchymal stem cells.
Zi WANG ; Li DING ; Xiao-Li ZHENG ; Heng-Xiang WANG ; Hong-Min YAN
Journal of Experimental Hematology 2014;22(3):600-604
This study was aimed to investigate the effect of dendritic cell-derived exosome (DCex) on in vitro osteoblast differentiation of human bone marrow mesenchymal stem cells (hBM-MSC). DCex were harvested from the DC culture supernatants by ultracentrifugation. The morphology of DCex was observed by using transmission electron microscopy and the surface marker expression was detected by flow cytometry. MSCs at passage 3 were used in this study. DCex incorporation into MSCs was observed under a confocal microscope. MSCs were either exposed to DCex (10 µg/ml) or the standard osteogenic induction condition. The cells cultured in complete medium were served as the control. The expression levels of Runt related transcription factor 2 (Runx2) were detected by real-time and standard PCR. The cellular alkaline phosphatase (ALP) activity was also detected. The results showed that the DCex were spherical or oval membrane vesicles with diameters of about 40-100 nm under transmission electron microscope. The DCex expressed surface molecules specific for DCs, including CD83, CD86, CD80, and HLA-DR. After cultured for 7 days, the MSCs treated with DCex highly expressed Runx2 as compared with the control group (P < 0.05). After cultured for 14 days, ALP activity of the DCex-treated MSCs was markedly higher than the control group (P < 0.01), though it was lower than that of MSCs treated with standard inductive agents. It is concluded that DCex can induce MSCs to differentiate into osteoblasts. The detailed investigations are needed to clarify the underlying mechanisms.
Alkaline Phosphatase
;
metabolism
;
Bone Marrow Cells
;
cytology
;
metabolism
;
Cell Differentiation
;
Cells, Cultured
;
Core Binding Factor Alpha 1 Subunit
;
metabolism
;
Dendritic Cells
;
cytology
;
metabolism
;
Exosomes
;
metabolism
;
Humans
;
Mesenchymal Stromal Cells
;
cytology
;
metabolism
;
Osteogenesis
;
RNA, Messenger
10.Mucosal dendritic cells shape mucosal immunity.
Sun Young CHANG ; Hyun Jeong KO ; Mi Na KWEON
Experimental & Molecular Medicine 2014;46(3):e84-
Dendritic cells (DCs) are key modulators that shape the immune system. In mucosal tissues, DCs act as surveillance systems to sense infection and also function as professional antigen-presenting cells that stimulate the differentiation of naive T and B cells. On the basis of their molecular expression, DCs can be divided into several subsets with unique functions. In this review, we focus on intestinal DC subsets and their function in bridging the innate signaling and adaptive immune systems to maintain the homeostasis of the intestinal immune environment. We also review the current strategies for manipulating mucosal DCs for the development of efficient mucosal vaccines to protect against infectious diseases.
Animals
;
Dendritic Cells/*immunology/metabolism
;
Humans
;
Immunity, Mucosal
;
Intestinal Mucosa/cytology/*immunology
;
T-Lymphocytes, Helper-Inducer/immunology

Result Analysis
Print
Save
E-mail