1.Preparation and immunogenicity evaluation of ferritin nanoparticles conjugated with African swine fever virus p30 protein.
Yue ZHANG ; Yi RU ; Rongzeng HAO ; Yang YANG ; Longhe ZHAO ; Yajun LI ; Rui YANG ; Bingzhou LU ; Haixue ZHENG
Chinese Journal of Biotechnology 2024;40(12):4509-4520
This study developed ferritin-based nanoparticles carrying the African swine fever virus (ASFV) p30 protein and evaluated their immunogenicity, aiming to provide an experimental basis for the research on nanoparticle vaccines against ASFV. Initially, the gene sequences encoding the p30 protein and SpyTag were fused and inserted into the pCold-I vector to create the pCold-p30 plasmid. The gene sequences encoding SpyCatcher and ferritin were fused and then inserted into the pET-28a(+) vector to produce the pET-F-np plasmid. Both plasmids were expressed in Escherichia coli upon induction. Subsequently, the affinity chromatography-purified p30 protein was conjugated with ferritin in vitro, and the p30-ferritin (F-p30) nanoparticles were purified by size-exclusion chromatography. The morphology and structural integrity of F-p30 nanoparticles were examined by a particle size analyzer and transmission electron microscopy. Mice were immunized with F-p30 nanoparticles, and the humoral and cellular immune responses were assessed. The results showed that F-p30 nanoparticles were successfully prepared, with the particle size of approximately 20 nm. F-p30 nanoparticles were efficiently internalized by bone marrow-derived dendritic cells (BMDCs) cells in vitro. Compared with the p30 protein alone, F-p30 nanoparticles induced elevated levels of specific antibodies and cytokines in mice and stimulated the proliferation of follicular helper T cell (TFH) and germinal center B cell (GCB) in lymph nodes as well as CD4+ and CD8+ T cells in the spleen. In conclusion, we successfully prepared F-p30 nanoparticles which significantly enhanced the immunogenicity of p30 protein, giving insights into the development of vaccines against ASFV.
Animals
;
Nanoparticles/chemistry*
;
Mice
;
African Swine Fever Virus/genetics*
;
Ferritins/chemistry*
;
Swine
;
Viral Vaccines/genetics*
;
African Swine Fever/immunology*
;
Mice, Inbred BALB C
;
Viral Proteins/genetics*
;
Escherichia coli/metabolism*
;
Dendritic Cells/immunology*
;
Immunogenicity, Vaccine
;
Antibodies, Viral/blood*
;
Female
;
Capsid Proteins/genetics*
2.Effect of Achyranthes bidentata polysaccharides stimulated dendritic cells co-cultured with cytokine induced killer cells against SW480 cells.
China Journal of Chinese Materia Medica 2013;38(7):1056-1060
Achyranthes bidentata polysaccharides (ABPS) was extracted from the root of A. bidentata. Dendritic cells (DC), which were stimulated with ABPS and/or tumor antigen SW480, were co-cultured with cytokine induced killer cells (CIK) to test the cytotoxic effect on colon cancer cell line SW480. Peripheral blood mononuclear cells (PBMNCs) which were separated from human peripheral blood were cultured to DC and CIK separately. (1) DC were divided into four groups: pure DC served as control group; ABPS (50 mg x L(-1)) stimulated DC served as experimental group; SW480 tumor antigen stimulated DC served as the second experimental group; ABPS (50 mg x L(-1)) and SW480 tumor antigen co-stimulated DC served as the third experimental group. Flow cytometry was used to detect the difference of the positive rate of molecules in the cell surface of DC, include CD80, CD86, CD1c, CD40, HLA-DR (6 samples for each group). (2) The four DC groups were mixed with CIK at the ratio 1:5 and acted as effect cells (DC + CIK groups), and the colon cancer cell line SW480 acted as target cells. The effect cells and the target cells were mixed together at the ratio 30: 1, 20:1 and 10:1 separately, and the CCK-8 kit was used to test the cytotoxic effect on colon cancer cell line SW480. (3) At the mixing ratio 30:1 of effect cells and target cells, ELISA was used to test the level of cytokines secretion, including IL-2, IL-12p70, IL-17 and TNF-alpha, in the liquid supernatant of every test group (3 duplication per sample). The results showed as following: (1) The positive rates of CD80, CD11c, HLA-DR, in the cell surface of DC which was co-stimulated by ABPS (50 mg x L(-1)) and SW480 tumor antigen, were obviously higher than the other DC groups (P < 0.05), and the positive rates of CD86, CD40 were obviously higher than the pure DC group (P < 0.05), and there was no remarkable difference with the other two DC groups. (2) At the mixing ratio 30:1, 20:1 and 10:1 of the effect cells and the target cells, the cytotoxic effect of ABPS stimulated DC + CIK group and SW480 tumor antigen stimulated DC + CIK group was obviously higher than DC + CIK group (P < 0.05), the cytotoxic effect of ABPS and SW480 tumor antigen co-stimulated DC + CIK group was obviously higher than all the other groups. (3) At the mixing ratio 30:1 of the effect cells and the target cells, the secretion levels of IL-12p70 and TNF-alpha in the liquid supernatant of the ABPS and SW480 tumor antigen co-stimulated DC + CIK group were obviously higher than all the other groups (P < 0.05), the secretion levels of IL-2 and IL-17 in the liquid supernatant of every test group have no remarkable difference. The cytotoxic effect of ABPS stimulated DC + CIK on SW480 was obviously increased. The cytotoxic effect of ABPS and SW480 tumor antigen co-stimulated DC + CIK group was obviously higher than all the other.
Achyranthes
;
chemistry
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Colonic Neoplasms
;
drug therapy
;
immunology
;
physiopathology
;
Cytokine-Induced Killer Cells
;
drug effects
;
immunology
;
Cytotoxicity, Immunologic
;
drug effects
;
Dendritic Cells
;
drug effects
;
immunology
;
Drugs, Chinese Herbal
;
pharmacology
;
Humans
;
Interferon-gamma
;
immunology
;
Interleukin-2
;
immunology
;
Polysaccharides
;
pharmacology
3.Enhancement of DC-mediated anti-leukemic immunity in vitro by WT1 antigen and CpG co-encapsulated in PLGA microparticles.
Liang ZHANG ; Sun ZHAO ; Jinhong DUAN ; Yan HU ; Ning GU ; Haiyan XU ; Xian-Da YANG
Protein & Cell 2013;4(12):887-889
Animals
;
Antigens, Neoplasm
;
chemistry
;
immunology
;
Cancer Vaccines
;
chemistry
;
therapeutic use
;
Cell Line, Tumor
;
CpG Islands
;
Cytotoxicity, Immunologic
;
Dendritic Cells
;
immunology
;
metabolism
;
Humans
;
In Vitro Techniques
;
Lactic Acid
;
chemistry
;
Leukemia
;
immunology
;
therapy
;
Lymphocytes
;
cytology
;
immunology
;
Nanoparticles
;
chemistry
;
Peptides
;
chemistry
;
immunology
;
therapeutic use
;
Polyglycolic Acid
;
chemistry
;
Polylactic Acid-Polyglycolic Acid Copolymer
;
WT1 Proteins
;
chemistry
;
immunology
4.Pro-inflammatory Cytokine Expression of Spleen Dendritic Cells in Mouse Toxoplasmosis.
Ho Woo NAM ; Hye Jin AHN ; Hyun Jong YANG
The Korean Journal of Parasitology 2011;49(2):109-114
Dendritic cells have been known as a member of strong innate immune cells against infectious organelles. In this study, we evaluated the cytokine expression of splenic dendritic cells in chronic mouse toxoplasmosis by tissue cyst-forming Me49 strain and demonstrated the distribution of lymphoid dendritic cells by fluorescence-activated cell sorter (FACS). Pro-inflammatory cytokines, such as IL-1alpha, IL-1beta, IL-6, and IL-10 increased rapidly at week 1 post-infection (PI) and peaked at week 3 PI. Serum IL-10 level followed the similar patterns. FACS analysis showed that the number of CD8alpha+/CD11c+ splenic dendritic cells increased at week 1 and peaked at week 3 PI. In conclusion, mouse splenic dendritic cells showed early and rapid cytokine changes and may have important protective roles in early phases of murine toxoplasmosis.
Animals
;
Antigens, CD11c/analysis
;
Antigens, CD8/analysis
;
Cytokines/*blood/*secretion
;
Dendritic Cells/chemistry/*immunology
;
Disease Models, Animal
;
Flow Cytometry
;
Mice
;
Mice, Inbred BALB C
;
Rodent Diseases/immunology
;
Spleen/*immunology
;
Time Factors
;
Toxoplasmosis, Animal/*immunology
5.The regulatory effect and mechanism of Astragalus polysaccharides on CD11c(high)CD45RB(low) dendritic cell.
Chinese Journal of Burns 2011;27(2):95-99
OBJECTIVETo investigate immunomodulatory effect of Astragalus polysaccharides (APS) on IL-12-secreting dendritic cell (DC) subset CD11c(high)CD45RB(low) DC.
METHODSSpleen CD11c(high)CD45RB(low) DC and CD4(+)T lymphocytes in BALB/c mice were purified by magnetic beads sorting, and were treated with 0 (as control), 50, 100, 200 µg/mL APS. Immunofluorescence staining and flow cytometry were used to determine expressions of CD11c(high)CD45RB(low) DC surface molecules, including CD40, CD80, CD86, I-A/E, and Toll-like receptor (TLR) 4. IL-12 level in CD11c(high)CD45RB(low) DC culture supernatant was determined by ELISA. The CD4(+) T lymphocytes were divided into: normal control group, non-stimulation group (CD4(+)T lymphocytes cocultured with APS-unstimulated CD11c(high)CD45RB(low) DC), high-dose APS stimulation group (CD4(+)T lymphocytes cocultured with 200 µg/mL APS-stimulated CD11c(high)CD45RB(low) DC), high-dose APS stimulation+antibody 1 group (CD4(+)T lymphocytes cocultured with 200 µg/mL APS-stimulated CD11c(high)CD45RB(low) DC and IL-12 antibody), high-dose APS stimulation+ antibody 2 group (CD4(+)T lymphocytes cocultured with 200 µg/mL APS-stimulated CD11c(high)CD45RB(low) DC and IL-12 antibody isotype). Proliferation ability of CD4(+) T lymphocytes was determined with MTT method. IL-4 level as well as IFN-γ level in CD4(+)T lymphocyte culture supernatant was determined by flow cytometry. Data were processed with one-way analysis of variance.
RESULTSCompared with those in control, the expressions of CD11c(high)CD45RB(low) DC surface molecules (except for CD86) on CD11c(high)CD45RB(low) DC surface, as well as IL-12-secreting level with dose-dependence were increased in cells stimulated with 50, 100, 200 µg/mL APS. Proliferation ability of CD4(+)T lymphocytes in high-dose APS stimulation group was higher as compared with that in non-stimulation group (F = 13.438, P < 0.05). IFN-γ level in high-dose APS stimulation group \[(2784 ± 137) pg/mL\] was higher than that in non-stimulation group \[(1952 ± 101) pg/mL, F = 12.177, P < 0.05\]. IL-4 level in high-dose APS stimulation group was (172 ± 20) pg/mL, which was lower than that in non-stimulation group \[(193 ± 19) pg/mL, F = 11.963, P < 0.05\]. Proliferation ability of CD4(+) T lymphocytes, IFN-γ level, and IL-4 level in high-dose APS stimulation + antibody 1 group were all ameliorated when compared with those in non-stimulation group; while levels of the 3 indexes in high-dose APS stimulation + antibody 2 group were similar to those in high-dose APS stimulation group.
CONCLUSIONSAPS can activate IL-12-producing CD11c(high)CD45RB(low) DC, and further induce the activation of immune function of T lymphocyte with shifting of Th2 to Th1 in vitro. APS can enhance the immune response via promoting the phenotypic and functional maturation of CD11c(high)CD45RB(low) DC.
Animals ; Astragalus Plant ; chemistry ; Cell Differentiation ; Cells, Cultured ; Dendritic Cells ; drug effects ; immunology ; secretion ; Interleukin-12 ; metabolism ; Mice ; Mice, Inbred BALB C ; Polysaccharides ; pharmacology ; Th1 Cells ; immunology
6.Expression of TNF-alpha and IL-1beta in Splenic Dendritic Cells and Their Serum Levels in Mouse Sparganosis.
The Korean Journal of Parasitology 2011;49(2):191-194
Sparganosis is a tissue invading helminthiasis infecting intermediate hosts, including humans. Strong immune responses are expected to occur in early phases of infection. Thus, we investigated cytokine expressions in splenic dendritic cells and in sera after experimental infection of mice. In splenic dendritic cells, TNF-alpha and IL-1beta expression peaked at week 1 and week 3 post-infection (PI), respectively, and also early phase (week 2 PI) depressed cytokine expression was noticed. Serum IL-1beta concentration increased significantly at week 2 PI and peaked at week 6 PI, and that of TNF-alpha peaked at week 6 PI. These results showed that pro-inflammatory cytokines, TNF-alpha and IL-1beta, are chronologically regulated in mouse sparganosis.
Animals
;
Dendritic Cells/*immunology
;
Disease Models, Animal
;
Interleukin-1beta/*blood/*secretion
;
Mice
;
Mice, Inbred BALB C
;
Rodent Diseases/immunology
;
Serum/chemistry
;
Sparganosis/*immunology
;
Spleen/*immunology
;
Tumor Necrosis Factor-alpha/*blood/*secretion
7.Maturation of bone marrow-derived dendritic cells by a novel beta-glucan purified from Paenibacillus polymyxa JB115.
Eun Ju KO ; Yun Young BYON ; Youngheun JEE ; Taekyun SHIN ; Seung Chun PARK ; Tae Wook HAHN ; Hong Gu JOO
Journal of Veterinary Science 2011;12(2):187-189
We investigated the immunostimulatory effects of a novel beta-glucan purified from Paenibacillus (P.) polymyxa JB115 on bone marrow-derived dendritic cells (DCs), a type of potent antigen-presenting cells. beta-glucan isolated from P. polymyxa JB115 enhanced the viability and induced the maturation of DCs. beta-glucan markedly increased the cytokine production of DCs and surface expression of DC markers. In addition, DCs treated with beta-glucan showed a higher capacity to stimulate allogeneic spleen cell proliferation compared to those treated with medium alone. These results demonstrate the effect of beta-glucan on DC maturation and may increase the use of beta-glucan.
Animals
;
Bone Marrow Cells/cytology/*drug effects/*immunology
;
Cell Survival/drug effects/*immunology
;
Dendritic Cells/cytology/*drug effects/*immunology
;
Flow Cytometry
;
Immunophenotyping/methods
;
Interleukin-12/analysis/immunology
;
Mice
;
Mice, Inbred BALB C
;
Nitric Oxide/analysis/immunology
;
Paenibacillus/*chemistry
;
Tumor Necrosis Factor-alpha/analysis/immunology
;
beta-Glucans/isolation & purification/*pharmacology
8.Preparation and antitumor effects of nanovaccines with MAGE-3 peptides in transplanted gastric cancer in mice.
Jun YANG ; Zhi-Hua LI ; Jia-Jia ZHOU ; Ru-Fu CHEN ; Liang-Zheng CHENG ; Quan-Bo ZHOU ; Li-Qun YANG
Chinese Journal of Cancer 2010;29(4):359-364
BACKGROUND AND OBJECTIVEAs a prospective vaccine carrier, nanoparticles can protect antigens from degradation and enhance immune response. This study prepared nanovaccines with MAGE-3-derived CD4+-CD8+T cell epitope peptides, and investigated its character and antitumor effects on transplanted gastric cancer in mice.
METHODSWe adopted the self-assembly method to prepare peptide/chitosan conjugated with deoxycholic acid (chitosan-deoxycholic acid) nanoparticles. We observed the appearance of the chitosan-deoxycholic acidnanoparticles through a transmission electron microscope (TEM) and analyzed the peptide content and its release pattern by fluorescence spectrophotometry. We observed tumor-suppression efficacy in vivo through animal experiments.
RESULTSWe successfully prepared nanoparticles with MAGE-3 peptide antigen, and its encapsulation efficiency and loading level were about 37% and 17.0%, respectively. These nanoparticles presented a delayed release pattern in phosphate buffered saline (PBS) at pH 7.4, and the full release time was about 48 h. In 2 mg/mL lysozyme, the nanoparticles showed a sudden release, and the full release time was about 24 h. ELISPOT and cytotoxic experiments showed that the MAGE-3 peptide loaded nanoparticles could stimulate immune response in vivo and could generate MAGE-3-targeted cytotoxic T lymphocytes (CTLs), and kill MAGE-3-specific tumor cells. Tumor suppression experiments showed that the regression ratio of the peptide-loaded nanoparticles group was 37.81%.
CONCLUSIONSMAGE-3 peptide/chitosan-deoxycholic acidvaccine-loaded nanoparticles can stimulate antitumor immune response in vivo and can regress the growth of mouse forestomach carcinoma cell line MFC.
Animals ; Antigens, Neoplasm ; chemistry ; immunology ; Cancer Vaccines ; administration & dosage ; Cell Line, Tumor ; Chitosan ; chemistry ; Dendritic Cells ; immunology ; Deoxycholic Acid ; chemistry ; Drug Carriers ; chemistry ; Epitopes, T-Lymphocyte ; immunology ; Male ; Mice ; Nanoparticles ; Neoplasm Proteins ; chemistry ; immunology ; Neoplasm Transplantation ; Stomach Neoplasms ; pathology ; therapy ; T-Lymphocytes, Cytotoxic ; immunology ; Tumor Burden
9.Effect of Astragalus polysaccharides on the phenotype and functions of human dendritic cells in vitro.
Chao-Jun CHEN ; Zhi-Liang LI ; Qiang FU ; Yi LIU ; Xiao LEI ; Hong-Chao WU ; Ying-Feng LIU
Journal of Southern Medical University 2009;29(6):1192-1194
OBJECTIVETo assess the effect of astragalus polysaccharides (APS) in inducing phenotypic and functional changes of human dendritic cells (DCs) in vitro.
METHODSHuman dendritic cells were induced from the peripheral blood monocytes in vitro by the application of tumor necrosis factor-alpha (TNF-alpha), interleukin-4 (IL-4) and GM-CSF, and cultured in the presence of APS at different concentrations (50, 100, and 200 mg/L). The morphological changes of the DCs were identified by optical microscope or scanning electron microscope. The phenotypic alterations of the cells were analyzed by flow cytometry.
RESULTSThe DCs cultured for 24 h in the presence of LPS and APS at 50 and 100 mg/L showed suspended growth in the culture medium and underwent morphological changes from spherical cells to irregular cells, with rough cell surface and cell processes of different morphologies. APS-treated DCs had the most typical dendritic structures and highly expressed the phenotypic markers of DCs (CD86 and HLA-DR), but with down-regulated CD14 expression as shown by flow cytometry.
CONCLUSIONBoth APS and the cytokines can induce the maturation of DCs derived from peripheral blood monocytes.
Astragalus membranaceus ; chemistry ; Cell Differentiation ; Cells, Cultured ; Dendritic Cells ; cytology ; immunology ; Dose-Response Relationship, Drug ; Granulocyte-Macrophage Colony-Stimulating Factor ; pharmacology ; Humans ; Interleukin-4 ; pharmacology ; Monocytes ; cytology ; Phenotype ; Polysaccharides ; pharmacology ; Tumor Necrosis Factor-alpha ; pharmacology
10.Effects of phenylethanoid glycosides from seeds of Plantago asiatica on maturation of dendritic cells.
Danfei HUANG ; Shaoping NIE ; Yongfu TANG ; Yin WAN ; Yiqing CHEN ; Mingyong XIE
China Journal of Chinese Materia Medica 2009;34(14):1831-1834
OBJECTIVETo elucidate the immunomodulatory mechanism of phenylethanoid glycosides from the seeds of Plantago asiatica by testing its effects on the maturing of murine bone marrow derived dendritic cells (DCs).
METHODMonocytes generated from bone marrow of Balb/cj mouse were cultured for 6 days in complete RPMI 1640 medium containing 10% FBS, rmGM-CSF and rmIL-4.50 mg x L(-1) acteoside or isoacteoside was added to cells on day 6 of culture for 24 h. The surface molecules expression level of DCs and their phagocytose ability were analysis by flow cytometry.
RESULTBoth acteoside and isoacteoside could increase the expression of CD11c, CD86, MHC II and CD80 on DCs surface. The ability of unstimulated DCs to uptake FITC-dextran was higher than that of phenylethanoid glycosides or LPS treated DCs.
CONCLUSIONBoth acteoside and isoacteoside could induce maturation of murine dendritic cells.
Animals ; B7-1 Antigen ; immunology ; metabolism ; B7-2 Antigen ; genetics ; immunology ; Cells, Cultured ; Dendritic Cells ; drug effects ; immunology ; Gene Expression ; drug effects ; Glycosides ; pharmacology ; Male ; Mice ; Mice, Inbred BALB C ; Phagocytosis ; drug effects ; Plant Extracts ; pharmacology ; Plantago ; chemistry ; Seeds ; chemistry

Result Analysis
Print
Save
E-mail